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ABSTRACT

Simulink is the de-facto standard for model-based software develop-

ment in many domains. With the ever-increasing size and complex-

ity of the models, it is very beneficial to apply highly automated and

rigorous verification techniques based on formal methods, which

go beyond simulation, in order to check whether a model satisfies

its specification. While tools employing such methods do exist for

Simulink, one can mainly check errors such as integer overflow,

array access violations, etc., or statistical properties.

In this paper, we show how Simulink models can be formally

analyzed against invariance properties using bounded model check-

ing reduced to satisfiability modulo theories solving. In its basic

form, the technique provides means for verification of an under-

lying model over bounded traces rigorously, however, in general

the procedure is incomplete. We identify common Simulink block

types and compositions by analyzing selected industrial models,

and we show that for some of them the set of non-repeating states

(reachability diameter) can be visited with a finite set of paths of

finite length, yielding the verification complete. We complement

our approach with a tool, called SyMC that automates the follow-

ing: i) calculation of the reachability diameter size for some of the

designs, ii) generation of finite (bounded) paths of the underlying

Simulink model and their encoding into SMT-LIB format and iii)

checking invariance properties using the Z3 SMT solver. To show

the applicability of our approach, we apply it on a prototype imple-

mentation of an industrial Simulink model, namely Brake by Wire

from Volvo Group Trucks Technology, Sweden.
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1 INTRODUCTION

Simulink is a graphical development environment that supports

system-level design, simulation, continuous verification and au-

tomatic code generation for embedded systems. Due to all these

features, it is used as the de-facto development standard in many

domains such as the automotive and avionics. For quality assur-

ance, industry has become interested in adopting formal verification

techniques, which bear the advantage of being systematic and some-

times exhaustive. One of the commonly-used tools is the Simulink

Design Verifier, a formal verification suite provided by Mathworks

based on the Prover plug-in [21]. The tool is suitable for finding

design errors such as buffer overflows, division by zero, array ac-

cess violations, etc., but not for complex invariance properties or

properties that involve timing constraints [19]. Model checking [8]

is a suitable candidate for verification of industrial designs with re-

spect to the aforementioned properties, however, despite the drastic

improvements in the memory efficiency of the approach, it still falls

short of verifying complex models mainly due to their large state

space. To cope with this challenge, there are solutions that resort to

statistical model checking (SMC) [15, 18] for analyzing properties

of industrial-size examples of Simulink models. Despite the fact

that the method is not exhaustive, the SMC approach is rigorous

and scalable. On the down side, the verification result comes as a

probability estimation accompanied by a confidence interval that a

given property is satisfied, which does not provide usable feedback

to the designers for the purpose of refining the model.

One way forward is to resort to a different type of model check-

ing called bounded model checking (BMC) [4]. BMC is a specialized

model checking technique, tailored for checking system proper-

ties over bounded executions of the model, up to some predefined

bound k. This characteristic makes it similar to SMC and suitable

for checking industrial designs with large state spaces, while still

being able to generate counter-example execution traces in case

an invariance property is violated. Additionally, the set of reach-

able states of an underlying model in BMC is encoded as a set of

propositional formulas, which means that the model checking is

then reduced to a satisfiability problem. This way of exploring the

state-space has been shown to scale well when applied on industrial

embedded software [25].

In this paper, we propose an approach for bounded invariance

checking of Simulink models based on the principles of BMC. The

main idea behind our approach is that instead of using state-of-the

art model-checking tools, we automatically generate a bounded

reachable state space of a given Simulink model and directly encode

it as a set of SMT constraints. Additionally, we investigate whether

there are commonly used designs of Simulink models for which

the complete set of reachable non-repeating states also know as

the reachability diameter [4] can be visited using paths of finite

length. We base our method on the execution semantics of Simulink

blocks and models proposed previously in the literature. Assuming

the former defined, we automatically generate the set of bounded

execution paths for a given Simulink model and encode them as a

set of satisfiability modulo theory (SMT) assertions. For the anal-

ysis of such model with respect to invariance properties we use

Z3 SMT solver [9]. In order to determine the completeness of the

bounded invariance checking procedure we perform the follow-

ing: we isolate commonly used Simulink designs (compositions

of blocks) from two industrial Simulink models, namely Brake by

Wire (BBW) and Adjustable Speed Limiter (ASL) both from Volvo

Group Trucks Technology (VGTT) and we create different configu-

rations by instantiating different block types into the commonly

used Simulink designs. Our results show that for some Simulink

designs the set of reachable non-repeating states are reachable via

paths of finite length, thus yielding the invariance checking com-

plete. For automating our approach, we propose a tool called SyMC
that automates all of the above-mentioned steps. Last but not least,

we validate our approach on the BBW system provided by VGTT.
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Figure 1: Simple Simulink model: (a) Root model and (b) In-

ner contents of SubSystem1 block

The paper continues as follows: in Section 2 we present the

preliminaries including Simulink, SMT, BMC and the formal syntax

and semantics definitions of Simulink blocks and model. Next, in

Section 3 we present the industrial use cases that we use in our

work, followed by Section 4 where we list the relevant identified

Simulink blocks and types of compositions. In Section 5 we describe

our method for bounded invariance checking for the considered

Simulink models and the SyMC tool. Next, in Section 6 we show the

applicability of our methodology on the BBW system. Finally, we

compare to related work in Section 7 followed by the concluding

remarks and directions for future research in Section 8.

2 PRELIMINARIES

In this section, we present the preliminary concepts that are used

in the rest of the paper.

2.1 Simulink: Structure and Simulation

Semantics

Simulink is an integrated environment for model-based develop-

ment of multi-domain dynamic systems. It provides a graphical

user interface with modeling functionalities, extensions for sim-

ulation and verification of the underlying models and automatic

code-generation, making it appealing to industrial practitioners.

A Simulink model represents a hierarchical diagram composed

out of various types of blocks interconnected with signals that

model the control and data flow inside the model. In this paper, we

use the terms signal and variable interchangeably. An illustrative

example is given in Figure 1a, where the blocks are denoted using

squares and triangles, signals via directed lines and input and output

ports as ovals.

The fundamental building units of a Simulink model are the

atomic blocks that model either a basic input-output relation (ex:

Gain, Subtract in Figure 1a) or generate signals’ values (ex: Con-
stant in Figure 1b). A hierarchical Simulink model of an arbitrary

depth is created using composite blocks (SubSystems) (ex: SubSys-
tem1 in Figure 1a). Unlike atomic blocks that have a predefined

input-output mapping function, the input-output function of the

composite blocks is realized through a set of atomic blocks. Each

signal in a Simulink model has at most one source block and one

or more destination blocks. The source block has write access over

the signal and controls its value, whereas the destination blocks

have read access only.

A Simulink simulation represents a sequential valuation of the

signals in the model for a finite amount of time, denoted as Tsim .

The sequential order at which the atomic blocks are executed dur-

ing simulation is called sorted order or slist. Each block has a unique

execution order number (sn ). The notion of time of a Simulink

simulation is modeled via two simulation steps: major (Tmaj ) and

minor (Tmin ) simulation step. Tmin represents an integer fraction

of the Tmaj and is used to improve the accuracy of the numerical

computation for the signals’ values. Continuous-time blocks per-

form computation at each Tmin , whereas the discrete-time blocks

compute their outputs at specific time points. The distance between

two executions of discrete-time block is an integer number ofTmaj
and is called sample time. Additionally, Simulink allows delaying

the first execution of some discrete-time blocks through a feature

called offset, expressed as an integer number of Tmaj . Any block in

a given Simulink model can operate in discrete-time manner if a

sample time is specified.

2.2 Formal Semantics of Simulink

In this section, we present the formal definitions for the atomic

Simulink block and Simulink model, respectively, introduced in

our previous work on formal analysis of Simulink models using

statistical model checking [14].

The syntax of an atomic Simulink block (B) is given as the fol-

lowing tuple:

B = ⟨sn ,Vin ,VD ,Vout ,∆, init ,blockRoutine⟩ (1)

where:

(i) sn ∈ Z+ is the execution order number;

(ii) Vin represents the finite (possibly empty) set of real-valued

input variables;

(iii) VD represents the finite (possibly empty) set of real-valued

data variables;

(iv) Vout represents the finite non-empty set of real-valued out-

put variables;

(v) ∆ = {∆0,∆1, · · · ,∆k } represents the totally ordered set

of time points at which an output value is produced. For

discrete-time Simulink blocks, the value of each time point

∆j is calculated as ∆j = offset+ j ∗ ts , where: ts , offset ∈ R≥0
are the sample time and the offset of the atomic Simulink

block, respectively, and 0 ≤ j ≤ k ∈ N is the index of time

point. For continuous blocks, ∆j = j ∗ tmin .

(vi) init() is the initialization procedure that initializes the inter-

nal state variables of the block to the configuration parame-

ters.

(vii) blockRoutine() : Vin × VD 7→ Vout ;Vin × VD 7→ VD is se-

quential update first of the outputs followed by the update

of the internal state variables.

We assume that all the time points in ∆ from Formula (1) can

be expressed as an integer multiple of Simulink simulation steps,

which represents the basic quanta of time in the system as follows:

∆j = j ∗ (m ∗ δ ) + (r ∗ δ ), n, m and r ∈ N (here δ corresponds to
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Tmin simulation step). Also we assume that x ∈ Vin , u ∈ VD and

y ∈ Vout represent input, internal state (data) and output variables,

respectively.

The operational semantics of a Simulink block can be interpreted

over a timed transition system T , defined as follows:

T = ⟨Σ, Σ0,L,→⟩ (2)

where: Σ is the set of states, where each state σ = (x |t ,u |t ,y |t ) is
given by the values y |t of all output variables y at a given time

instance t ∈ R≥0, for given input at time t , that is, x |t , and data at

time t , that is, u |t , Σ0 ⊆ Σ is the set of initial states, L = La ∪ Lt
represents the set of labels, where La = {init ,blockRoutine} is the
set of action labels and Lt = {m ∗ δ , r ∗ δ } is a set of time labels,

and→⊂ Σ × La × Lt × Σ is the transition relation that consists of

the following types of transitions:

σ0
init,r∗δ
−−−−−−−→ σ ⇐⇒


if VD , ∅ then t = t0 + (r ∗ δ ), and

init() : u = u0,y0 = u

else t = t0 and init() : void

(3)

σ
blockRoutine,m∗δ
−−−−−−−−−−−−−−−−−→ σ ′ ⇐⇒ t ′ = t +m ∗ δ , and

u ′ = f (x ′,u),y′ = f (x ′,u ′) (4)

The first transition type called init is executed once at the beginning
of the blocks’ execution only for those which have an internal state,

whereas the second type of transitions called blockRoutine perform
update of the internal state (if any) and the output variables for

given inputs at particular time points denoted as t +m ∗ δ . If in the

definition of ∆ we instantiate r =m = 1 we obtain the continuous-

time behavior of a blocks that execute the blockRoutine infinitely
often, that is at every simulation step δ .

From the above definition, an infinite run ρ of a Simulink block

can be defined as the following sequences of states:

σ0
init,r∗δ
−−−−−−−→ σ1

blockRoutine,m∗δ
−−−−−−−−−−−−−−−−−→ . . .

blockRoutine,m∗δ
−−−−−−−−−−−−−−−−−→ σn (5)

A Simulink model (S) is defined as a sequential composition of

atomic Simulink blocks, as follows:

S = B1 ⊗ B2 ⊗ B3 · · · ⊗ Bn (6)

where: snS =

n⋃
i=1

sni is an ordered list of execution with ∀(i, j) ·

i < j ⇒ si < sj , VinS =

n⋃
i=1

Vini , VoutS =

n⋃
i=1

Vouti , VDS =

n⋃
i=1

VDi being the sets of input, output and internal state vari-

ables, ∆S =

n⋃
i=1

∆i represents the set of time points at which

the variables are updated, (init)S ≜ (init1)|=r1∗δ ; (init2)|=r2∗δ ;
. . . ; (initn )|=rn∗δ is an ordered list of block initialization functions,

and (blockRoutine)S ≜ (blockRoutine1)|=∆1
; (blockRoutine2)|=∆2

;

. . . ; (blockRoutinen )|=∆n is an ordered list of block input-output

relations executed atomically at given times ∆i . The blocks in the

sequential composition communicate via shared variables.

2.3 Satisfiability Modulo Theories and Z3

The problem of determining whether a Boolean formula can be

made true by assigning true/false values to the constituent Boolean

variables is called the Boolean satisfiability problem (SAT). If a

given Boolean formula is satisfiable, the boolean decision procedure

generates a valuation of the variables such that the formula is true.

In the opposite case, there exists no valuation for the constituent

variables that will make the formula true. Satisfiability Modulo

Theories (SMT) represents an extension of SAT, where some of the

symbols are interpreted by a background theory [10]. For instance,

the proposition might contain a variable of type integer over which

arithmetic operations are applied.

In our work we use the Z3 tool [9] from Microsoft Research,

which is a state-of-the-art SMT solver and theorem prover. The

input to the tool is a script specified in the SMT-LIB language [2].

The satisfiability of the formulas present on the Z3 stack is checked

via the check-sat command. If the set of formulas is satisfiable

Z3 returns SAT. In the opposite case Z3 returns UNSAT. When the

Z3 tool cannot determine whether the set of formulas is satisfi-

able or not it returns UNKNOWN. There are additional commands

that can provide more information for SAT and UNSAT cases, re-

spectively. The get-model command returns an interpretation that

makes all formulas on the Z3 internal stack true. On the other hand,

the unsat-core command returns the minimal inconsistent set of

formulas.

2.4 Bounded Model Checking

Bounded model checking (BMC) [4] is a specialized model checking

technique for verification of system properties over executions of

finite length. The length of the paths is called bound and is usually

denoted as k. Initially proposed as an efficient refutation technique,

it has been shown that BMC can also be used for full verification

of underlying designs [11].

LetM be the system model with set of states S , I ⊆ S be the set

of initial states and a state transition relation T , which is a binary

relation on S . We write T (s, s ′) to indicate that the state s is related
to state s ′ via the transition relation T . Based on this, we define a

path inM as follows:

path(s[0, ..,n]) ≜ ∧T (si , si+1),∀i . 0 ≤ i < n (7)

Consequently, any sequence of states that satisfies Formula (7)

is a valid path inM . The size of a path is determined by the number

of transitions taken. An invariance property (P) is a property that

holds in every reachable state in modelM , or formally expressed:

∀s0, .., sn , ∀i · 0 ≤ i ≤ n · (I (s0) ∧ path(s[0, ..,i])) =⇒ P(si ) (8)

where P(si ) is a predicate denoting that a given state si satisfies
property P. Using this definition, one starts from the set of initial

states I (s0) and repeatedly applies the transition relationT , and each
new state satisfies P. This is called a forward reachability. The same

property can be checked using a backwards reachability, where the
idea is to start from a non-initial state in which P does not hold

and then show that it is not possible to reach an initial state by

applying the inverse transition relation. The backwards reachability

is formulated as follows:

∀s0, .., sn , ∀i · 0 ≤ i ≤ n · ¬(¬P(si ) ∧ path(s[0, ..,i]) =⇒ I (s0)) (9)
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In any case, one can prove that the modelM satisfies an invariance

property P by proving the following conjunction:

∀s0, .., sn , ∀i · 0 ≤ i ≤ n · ¬(I (s0) ∧ path(s[0, ..,i]) ∧ ¬P(si )) (10)

where n denotes the length of the longest path of non-repeating

states, defined as follows:

max{i |∃s0, · · · si · I (s0)
i−1∧
j=0

T (sj , sj+1) ∧
i−1∧
j=0

i∧
m=j+1

·sj , sm } (11)

Provided that the transition relation T (s, s ′) can be expressed as

a predicate, it is clear how the reachability problem can be reduced

to a satisfiability problem. In cases when the transition relation

T is constrained by a background theory an SMT is applied. This

representation of the transition relation and the reachability proce-

dure gives advantage to BMC over the BDD-based symbolic model

checking on two fronts: i) it alleviates the infamous state-space

explosion of model checking, and ii) it is very efficient for fast

detection of errors in bounded traces up to 100 transitions [4].

The BMC procedure terminates when one of the following two

conditions is satisfied: i) Formula (10) cannot be satisfied or ii) a

predefined number of transitions (denoted as k) of the transition
relation has been reached. The termination in the first case is due

to the fact that a state that does not satisfy property P is detected,

in which case a counter-example is generated. In the second case,

all of the states along the generated path satisfy the property P.
When the procedure terminates according to the second case, the

property is proven to hold only until the bound but not beyond that.

This yields the procedure incomplete, as there is no information

whether the states reachable beyond k satisfy the property or not.

However, there are some designs in which the paths might be

infinite, yet the set of non-repeating states is finite and all of them

are reachable within k. Such designs usually contain a back-loop in

the transition relation, meaning thatT (si , sj ) represents a transition
from some current state si to a state sj that has been previously

visited. The minimal path that contains the complete set of non-

repeating states is called the reachability diameter, and the size of

the same is called completeness threshold (CT). The existence of the
reachability diameter of finite size allows one to perform complete

verification of invariance properties in general and a restricted class

of liveness properties [17] over models with infinite state-space.

In our work, we use the Formula (10) for checking invariance

properties over bounded executions of Simulink models.

3 INDUSTRIAL USE CASES

In this section we present the industrial systems, namely ASL and

BBW both from VGTT, whose Simulink models we analyze here.

3.1 Adjustable Speed Limiter

ASL is an operational software function integrated into the modern

heavy load vehicles produced by Volvo GTT. The intended func-

tionality of the system is to control the servomechanism of the

vehicle in order to limit the vehicle speed such that it does not

exceed the predefined threshold defined by the driver. ASL is an

ASIL-A safety critical system [1]. Its specification consists of more

than 300 requirements at the system level, which cover the correct

functioning of the system with respect to: i) variability, modes of

operation, vehicle and engine speed; ii) road conditions, maintain-

ing smooth driving experience in various road conditions such as

flat or up/downhill roads, and iii) driver’s requests that are passed

to the function via the provided human machine interface, etc.

The complete ASL system consists of 22 modules, each of them

realized in a separate Simulink model file. The total number of

Simulink blocks inside the ASL system exceeds 4000. For this paper,

we have used only two of the modules, called the Engine Manager

and the Road Speed Limit Manager.

3.2 Brake by Wire

BBW is a prototype implementation of a software function that

controls the breaking system of a vehicle equipped with an anti-

lock breaking system. It is realized completely in electronics, thus

eliminating all mechanical connections between the braking pedal

(the sensor) and the four brake actuators on the wheels. The break-

ing pedal sensor installed in the car cabin reads the position of

the brake and sends it to the main computational module, which

then computes the brake torque to be applied on the wheels. The

rotational speed of the wheels is monitored by sensors installed

on all wheels. The ABS functionality is applied if the velocity of

the vehicle exceeds some predefined threshold, which prevents the

wheels from locking and skidding.

The BBW function is implemented as a Simulink model com-

posed of 320 blocks. The system specification of the BBW that

describes the intended functionality consists of 13 functional, and

4 timing requirements.

4 COMMON BLOCKS AND COMPOSITIONS

In this section, we first describe the commonly-occurring Simulink

block types and compositions that we identify by studying the

Simulink models of ASL and BBW, and give formal definitions to

the latter. Next, we investigate whether there exists a finite bound

k which represents the CT for the given compositions.

4.1 Identified Block Types

The atomic Simulink blocks used in the industrial use cases (see

Section 3) belong to the following types: feedthrough, delay, and
SFunction. In the following, we discuss in more details the spe-

cific block types and their characteristics relevant for this work.

Additionally, we assume that all signals in the model are scalars.

Feedthrough (FT) blocks. FT represents a category of atomic

Simulink blocks characterized by the absence of an internal state

and by the immediate execution of the block routine when the

input(s) change(s). Some examples of feedthrough blocks include:

relational, logic and arithmetic operators, etc. The type of the block is
determined by the type of the transfer function (f () in Formula (4)).

In our work, for the sake of simplicity we assume that the number

of arguments in the transfer function can be arbitrary, but it always

has only one output that is scalar. Having more then one output of

the transfer function does not influence neither the formalization

of the implementation as long as they are scalars.

Based on the possible transitions for atomic Simulink blocks

given by Formulas (3) and (4), the execution trace of a feedthrough

block BFT , with VinBFT the set of input variables and VoutBFT the
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set of output variables, the value of any variable yBFT ∈ VoutBFT
in any state σiBFT from Formula (5) (denoted as yiBFT ) is always
defined as follows:

yiBFT = fBFT (xiBFT ), (12)

where xiBFT and yiBFT are the valuations of the xBFT ∈ VinBFT
yBFT ∈ VoutBFT in a given state σiBFT , respectively.

Delay blocks. The blocks from this category delay the input

value for a certain period of time. There are various block types in

this category. In the industrial use cases considered for this paper

only theUnitDelay and RateTransition types of delay blocks are used.
RateTransition blocks represent a generalization of UnitDelay with

many modes of operation, for instance: ZOH (Zero-order-hold),

1/Z (UnitDelay), Buf (semaphore controlled copying of the input to

the output), NoOp (does nothing), etc. However, in our industrial

models, all of the RateTransition blocks operate as UnitDelay in

a discrete-time manner (ts > 0). The offset of the delay blocks is

always 0.

The execution semantics of a UnitDelay block BD is given as

follows: before the first computation, the init() transition is exe-

cuted, setting uBD ∈ VDBD
to the initial value (initV ) as specified

in the block’s configuration. After the block starts, the block exe-

cutes its blockRoutine(). If we assume that t denotes the time that

has elapsed along the execution of the block (Equation (5)), the

blockRoutine() is executed whenever t mod ts = 0. Consequently,

the values of the output variableyBD of a UnitDelay block is defined

as follows:{
uiBD = initV , executed before the execution starts

yiBD = uiBD , uiBD = xiBD , if t mod ts = 0

(13)

SFunctions. In Simulink one can extend the set of predefined

block types via the concept of SFunction. In order to define custom

a block, one first needs to implement the block routine in either

Matlab, C or Fortran. Once the transfer function is implemented,

the block is then wrapped with a mask that makes it look like any

other block. The purpose of defining a mask is to encapsulate the

block routine and to provide I/O interface which represents the

input(s) into the computation and the output(s) of the same. In our

use cases, the SFunctions are either stateless or the internal state is
constant, that is, it does not change during execution. Due to this,

all the SFunction blocks are treated as feedthrough.

4.2 Identified Compositions

The structural analysis of the industrial use cases shows that in

principle there are two major designs of blocks compositions: lin-
ear and feedback-loop. The term composition is used to denote a

subset of atomic blocks of a Simulink model, which in isolation

can be treated as a Simulink model. Consequently, the syntax and

semantics definitions for Simulink models apply to compositions

as well. In this section, we provide definitions for the identified

compositions.

Before we introduce and define the different types of composi-

tions, we define the notion of predecessor for Simulink blocks inside

a given Simulink model.

B1

B2

B3 B4

input1 yB1

yB2

yB3 yB4

input2

Figure 2: Linear composition of Simulink blocks.

B1

B2 B3

input yB2

yB3

yB3

yB1

Figure 3: Feedback-loop composition of Simulink blocks.

Definition 1. Let S = B1,B2, . . . Bn be a set of n ∈ N atomic
Simulink blocks with their sets of input and output variables
VinBi ,VoutBi ,∀Bi · i ∈ [0,n]. A Predecessor (Bi is a predeces-
sor of Bj ) is a binary relation over S defined as follows: ∀Bi ,Bj ∈

S · predecessor (Bi ,Bj ) ≜ ∃y · y ∈ VoutBi ∧ y ∈ VinBj .

The set of Predecessors(Bi ) ⊂ S is: predecessors(Bi ) ≜ ∀Bj ∈

S · (predecessor (Bj ,Bi ) ∨ (∃Br ∈ predecessors(Bi ) ∧ Bj ∈

predecessors(Br ))).

Linear composition. This is the most common composition of

Simulink blocks. An illustrative example of a linear composition is

given in Figure 2, and it consists of three blocks (B1, B2 and B3) and
four signals (input, yB1, yB2, yB3). The main characteristic of the

linear compositions is that the signals propagate in one direction,

meaning that the current value of any output signal depends on the

current value of the input signal(s) and internal state variables only.

For instance, let us consider the signal yB3
from Figure 2. The value

of the signal can be computed using a function obtained as a sequen-

tial (forward) composition of transfer functions of the predecessor

blocks yB3
= f3(f2(input2), f1(input1)), where f1, f2 and f3 are the

transfer functions of B1,B2 and B3, respectively and input1 and

input2 are the inputs. Based on this, we define a linear composition

as follows:

Definition 2. Let B1,B2, . . . Bn be a set of n ∈ N atomic Simulink
blocks with their sets of input and output variablesVinBm ,VoutBm , for
anym ∈ [0,n] and execution traces: ρBm = σ0Bm ,σ1Bm , · · · ,σkBm ,
m ≤ n, respectively. Let yBm ∈ VoutBm be the output signal variable
of Bm , and yiBm · i ≤ k be its valuation in a given state σiBm . We say
that composition C is linear if ∀m · 0 ≤ m < n · ∀yBm , ∀yjBm · 0 ≤

j < kBm , ∀yrBm · j < r ≤ kBm · ∀z , m, 0 < z < n · (yrBm ,
fBm (yjBm ) ∧yrBm , fBm (fBz (...(fB1

(yjBm )))) ∧ (∀inputj ∈ VinB
1

·

yjBm = fBm (fBm−1
(. . . fB1

(inputj ))))).

Feedback-Loop composition. The second design pattern iden-

tified in the industrial use cases is the feedback-loop composition.

Opposite to the linear composition, in the feedback-loop compo-

sition there exists at least one output signal for which the current

value is computed based on some of its previous values. Formally,

we define a feedback-loop composition as follows:
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Definition 3. Let C = B1 ⊗ B2 ⊗ · · · ⊗ Bn be a composition of
atomic Simulink blocks B1,B2, . . . Bn defined as in Definition 2.
The composition C is feedback-loop if ∃yBi · ∀yjBi · 0 < j ≤ kBi ·
∃r · j < r ≤ kBi · ∃m , i, 0 < m < n · (yrBi = fBi (yjBi ) ∨ yrBi =
fBi (fBm (...(fB1

(yjBi ))))).

This broad definition for the feedback-loop composition incor-

porates both direct and indirect feedback loops. A direct feedback-

loop assumes that the feedback signal is input to the current block

B (yB = f (yB )), whereas an indirect one assumes that the feed-

back signal is used as an input signal to some of the predeces-

sors of B, and it eventually becomes an input of the current block

(yBn = fBn (. . . fB1
(yBn ))). An illustrative example of an indirect

feedback-loop composition is given in Figure 3, which is composed

of three blocks (B1, B2 and B3) and four signals (input, yB1, yB2,
yB3), with yB3 being the feedback signal. In our work we assume

that the feedback-loops cannot be algebraic
1
since the Simulink

models that contain them cannot be used for code generation. This

means that in the feedback-loop compositions, the feedback signal

must be delayed using some type of a delay block. Such require-

ment introduces a new signal (yB1 in Figure 3) into the composition.

Consequently, the signal yB1 holds either the initial value of the
delay block or some previous value of yB3.

Another important observation is that in the general case the

type of a given composition cannot be implied from its graphical

representation. An example of graphically linear composition that

in fact is a feedback-loop is a composition where at least one of the

blocks is a continuous-time block (ex: Integrator, Derivative, etc.).

4.3 Completeness of Bounded Invariance

Checking for Identified Compositions

In this section, we investigate whether there exists a CT, for the

linear and feedback-loop compositions, such that the bounded in-

variance checking procedure is complete, under the following as-

sumptions: i) each block in the composition has an execution order

id which is monotonically increasing (sn1, sn2, · · · snn ), and ii) the

invariance properties are always specified over the output signal

of the last block in the composition. Recalling Formula (10) that is

used for checking invariance properties, as well as the definition of

CT (Section 2.4), a given composition of Simulink blocks has a CT

iff all the possible values of an output signal y constrained by the

invariance property are reachable within paths of a finite length.

Linear Composition. According to the formal definition for lin-

ear composition (Formula (2)), the value of each output signal in the

model is computed based on the current values of the input and the

internal state variables of the constituent blocks. In the following,

we look at two possible configurations: i) linear compositions of

feedthrough blocks only, and ii) linear compositions of feedthrough

and delay blocks.

In the first configuration (Figure 2), there is no internal state

in the composition. Assuming that input1 and input2 are the in-

puts of B1 and B2, respectively, the value of the signal yB4 is

1
an algebraic loop occurs when a signal loop exists with only direct feedthrough blocks

within the loop. Direct feedthrough means that the block output depends on the value

of its input; the value of the input directly controls the value of the output.

always calculated by sequential application of the transfer func-

tions fB1
, fB2
, fB3

andfB4
corresponding to the B1,B2,B3,B4 blocks,

respectively, over the input signal, in that specific order. Conse-

quently, the value of the output signal yB4 in all states of execution

ρB4
= σ0B

4

,σ1B
4

, · · · ,σkB
4

is always calculated by the following

expression:

∀i · 0 ≤ i < k, yiB
4

= fB4
(fB3

(fB2
(input2i ), fB1

(input1i ))) (14)

Theorem 1. Let C = B1 ⊗ B2 ⊗ · · · ⊗ Bn , n ∈ N be a linear
composition of feedthrough blocks with fB1

, fB2
, · · · , fBn transfer

functions, respectively, input ∈ VinC is the input of block B1 and
output ∈ VoutC is the output signal of block Bn in the composition.
For such compositions, there exists a reachability diameter of size
0 (called the CT of C), over which the satisfaction of an invariance
property P can be checked. We say that P is an invariance prop-
erty of C iff the following conjunction does never evaluate to true:
fBn (fBn−1 · · · (fB1

(input))) ∧ ¬P(yBn ).

Proof. Let us assume that yiBn and yjBn represent the valu-

ations of an output signal yBn in states σiBn and σjBn , respec-
tively, such that yiBn , yjBn for inputi = inputj . Since the value
of yiBn is defined by Formulas (12) and (14), ∀i · 0 ≤ i < k , the
assumption is clearly a contradiction as fBn (· · · fB2

(fB1
(inputi ))) =

fBn (· · · fB2
(fB1

(inputj ))) for inputi = inputj . Consequently, all the
reachable values of the variable yBn can be computed in the initial

state, thus the claim that CT = 0 holds. □
In the second configuration, at least one of the constituent blocks

(for instance B2) in the linear composition is a delay block. In order

to determine whether the existence of a CT is preserved, let us

recall the definition of blockRoutine() for delay blocks given in

Formula (13). It follows that the value of a delayed signal yB2
is

either the initial value of the block’s internal state (initVB2) given
in the block configuration or exactly the same value of the input

signal input2 delayed by one sample time of B2. For compositions

composed of delay and feedthrough blocks, the execution sequence

can be divided into two segments: i) whenyB4
is calculated based on

the initial value of B2 (yB4
= fB4

(fB3
(initVB2, fB1

(input1)))), and ii)
when block B2 starts to execute, and the value ofyB3

is calculated as:

yB4
= fB4

(fB3
(input2, fB1

(input1))). We refer to these two segments

as initialization and feedthrough, respectively. Once the execution of
the composition enters the feedthrough segment, based on Theorem

1 the composition reaches a CT. Therefore, the index of the state

at which the execution of the last signal in the composition enters

the feedthrough segment is the CT of the composition.

Theorem 2. Let C = B1 ⊗ B2 ⊗ · · · ⊗ Bn , n ∈ N be a
linear composition of feedthrough and delay Simulink blocks
with VoutB 1

,VoutB 2
, · · · ,VoutBn set of output variables, and

ts1, ts2, · · · tsn sample times, respectively. Then for all such composi-
tions there exists ki for each signal y ∈ VoutB i · 0 < i ≤ n which is
the completeness threshold (CTi ) for the signal y. The value of ki for
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each y ∈ VoutB i · 0 < i ≤ n is computed as follows:

ki =max(kj ),Bj ∈ predecessors(Bi ), if Bi is a feedthrough block,

and there exists a delay block in predecessors(Bi )

ki =m ∗ tsi ,m =max(ceil(
CTj
tsi )),Bj ∈ predecessors(Bi ), if Bi is a

sampled feedthrough block

ki = (m + 1) ∗ tsi , if Bi is a delay block

Proof. Part I: Correctness of computation of k .
Recalling Theorem 1, the CT for feedthrough blocks is 0. Conse-

quently, if such a block is placed inside a composition where there

are sampled blocks it will not have any effect on computing the k
of the entire composition.

In the second case, that is, if a feedthrough block Bi ∈ S is

sampled (ts > 0), there are two possibilities: i) if tsi = max(kj ) ·

Bj ∈ predecessors(Bi ), then
max (kj )

tsi = 1 and ki equals to the

largest CT of its predecessor blocks; ii) when tsi ,max(kj ) · Bj ∈

predecessors(Bi ), the k of the sampled feedthrough block is the

first execution of the same after the maximal k of its predecessors,

which is assured by the ceiling (ceil()) function when calculating

m.

Finally, for the delay block, the calculation of CT is similar to the one

of sampled feedthrough block, except that it needs one additional

execution. This is because of its execution semantics (see Formula

(13)), according to which the input read at a given sample time will

become an output during the next execution, hencem + 1.
Part II: ki is indeed the CT for the specified signal. Proof by contra-
diction.

Let us assume that Bi is a sampled feedthrough block with y ∈

VoutBi output variable, and k as in Theorem 2 is not the CT of y.
This means that there is a state along the execution path at position

r ∈ N such that k < r at which Bi produced new value. From the

calculation of k , we know that ∃m ∈ N such thatm ≤ r at which
all the inputs of Bi have reached their respectiveCTs . Starting from
position k the value of y in all subsequent states r ≥ k is calculated

using the following expression yr = fi (x1r Bi , · · · xzr Bi ), where fi
is the transfer function of Bi and x1Bi , · · · xzBi ∈ VinBi are the set
of input signals. Consequently, it is not possible to reach a new

value for y after step k , thus the assumption that k , CT is false.

Finally, let us assume that Bi is a delay block with yBi ∈ VoutBi
output variable and ∃r such that k < r is the CT of yBi . Given the

way we compute k , we know that ∃m ∈ N such thatm ≤ k at

which all the inputs of the Bi have reached their respective CTs .
Starting from position k the value of y in all subsequent states

r ≥ k yBi is always assigned as follows: yr Bi = x(r−ts)Bi , where
xBi ∈ VoutBi and ts is the sample time of Bi expressed in number

of transitions. From the calculation of k it is clear that r − ts > kj ,
where kj is the CT of the input signal, thus the initial assumption

does not hold. □

Feedback-Loop Composition. The main characteristic of the feed-

back loop compositions is that the value of some signal depends on

one or more previous values of the same signal. The previous value

of the feedback signal must be delayed using a delay block before

returned into the main sequence of computation (see Section 4.2).

Due to the dependency of previous values, in order to compute the

value of the output signal in the current state, one must compute

all the previous values of the same. To be able to show the com-

pleteness of BMC for the composition, we must demonstrate that

there exists a state after which no new values of the output signal

can be produced.

Theorem 3. Let C = B1 ⊗ B2 ⊗ · · · ⊗ Bn be a feedback loop
composition of blocks. For such compositions, there exists CT if the
value range of the inputs of the composition and feedback signal
are constrained with closed and enumerable intervals and the output
signal y ∈ VoutBn over which the invariance property is specified is
strictly monotonic.

Proof. Let us assume that in the above composition C yBn ∈

VoutBn is the output signal of the last block of the composition

over which the invariance property is specified and that yBn =
fn (fn−1 · · · fn−m (x1Bn ,x2Bn ,x3Bn , · · · xhBn )),m ∈ N · 1 ≤ m <
n,x1Bn ,x2Bn , · · · xhBn ∈ VinBn is the function that assigns val-

ues of the output variable yBn . We assume that one of the inputs

(x1Bn ,x2Bn , · · · xhBn ) is the feedback signal and that the value

range of each of the signals is constrained by enumerable closed

interval [x1Bnl
,x1Bnu ], [x2Bnl

,x2Bnu ], · · · [xhBnl
,xhBnu ].

1) Let us assume that fn (fn−1 · · · fn−m (x1Bn ,x2Bn ,x3Bn , · · · ,
xhBn )) is strictly monotonically increasing function. Given that one

of the inputs is the feedback signal, with each new computationyBn
takes new value that is bigger than the previous one. Consequently,

there exists minimal difference between the current and previous

value of theyBn signal. Using the minimal increment of theyBn and

the enumerable value ranges of the inputs it is possible to calculate

the maximal number of steps of the transition relation k at which

yBn reaches its maximal value, thus k = CT .
2) Let us now assume that

fn (fn−1 · · · fn−m (x1Bn ,x2Bn ,x3Bn , · · · xhBn )) is a strictly

monotonically decreasing function under the same setup as in 1).

Analogously, each new value for yBn is smaller than the previous

one with some minimal difference. We can compute the maximal

number of steps k at which yBn reaches its minimal value, hence

k = CT . □

5 SMT-BASED BOUNDED INVARIANCE

CHECKING

In this section, we present our SMT-based bounded invariance

checking method (Section 5.1) and the SyMC tool (Section 5.2) that

automates the later.

5.1 Method

The proposed bounded invariance checking approach for Simulink

models is illustrated in Figure 4. It consists of the following steps:

i) automatic generation of finite execution paths of the Simulink

model according to the formal semantics presented in Section 2.2,

ii) automatic encoding of the generated executions as an SMT-LIB

script suitable for analysis using Z3, and iii) the analysis of the

generated SMT-LIB script. The boxes denote the processing steps,

whereas circles denote the artifacts. In the rest of this section we

describe each of the steps in detail.

The proposed methodology starts with Step 1, during which

finite paths (as defined by Formula (7)) with a predefined bound k
are generated. As inputs, the path generation procedure assumes a
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model slist

Step 1: path generation

Step 2: encoding in SMT-LIB format

script

Step 3: analysis using Z3P

Figure 4: Boundedmodel checking approach for the analysis

of Simulink models.

Simulink model (model) and a sorted order execution list (slist) that
contains the execution number of each atomic block in the model.

The length of the generated paths (bound k) is always expressed
as a number of simulation steps (see Section 2.1). For generating

the bounded paths, a number of configuration parameters must be

provided: the duration of the paths in absolute time, the relation

between one unit of absolute time and the major simulation step

(Tmaj ), and the ratio between Tmaj and minor (Tmin ) simulation

steps.

Depending on the type of the model, a different strategy is em-

ployed for generating the state-space of the model. For instance, if

the model is purely discrete time, Tmin is not used, since all of the

sample times of the model can be expressed as an integer number

of Tmaj . Additional optimization includes the introduction of the

fundamental sample time (Tf ) that represents the least common

divisor of all different sample times used in the model. In the worst

case, Tf = Tmaj , but usually it is larger, thus resulting in paths of

less transitions that describe the same set of reachable states. As

an additional optimization, the procedure assigns sample time of

the non-sampled feedthrough blocks based on the rate of change

of their input(s).

As the paths are already encoded symbolically during Step 1,

during the second step the generated paths are transformed into

SMT assertions that can be analyzed using any tool that accepts

input specified in SMT-LIB. For illustration, let us recall the simple

model from Figure 1b. We assume the following names for the

signals: the output signal of block In1 is denoted by yin1, the output
signal of Constant is denoted by yconstant , and the output signal of
the blockAdd isyadd . In Step 1, each state in the path is represented
by the following tuple: (yin1, yconstant , yadd ). Following this, a

single one-transition execution path for this composition can be

encoded as follows: ((x, 4, y), (5, 4, 9)). In the first state (x , 4,y), the
values of the signals yin1 and yadd are not known, thus they are

represented with symbols x and y, respectively. A possible successor

state of the previous is (5, 4, 9), meaning that setting the value of

the signalyin1 to 5 results in signalyadd becoming 9. It is clear that

there might be other one-transition paths. To be able to encode all

the possible successors of (x , 4,y), we encode the successor state
analytically, as follows: T((x, 4, y), (yin1, 4, (+ 4 yin1))). By encoding

the value of the signalyadd analytically, we have implicitly encoded

all the reachable values of that signal. The value of signal yin1 does

not represent an input to the system (see Figure 1a), which means

that it can be further expressed as a function of the Gain block.

If we continue repeating the procedure, eventually an analytical

expression for each signal is created, where the only variables are

the inputs. If the model is encoded as such, then we can say that

the analytical expression represents all the reachable values (states)

for all the signals in the model, which according to Theorem 1 is

the CT of the model.

Finally, the SMT script that can be analyzed in order to deter-

mine whether the system model satisfies an invariance property for

all bounded executions is generated. The presented methodology

does not provide means for the correct encoding of the invariance

properties such that they can be checked over the generated path.

In the current version, their existence is assumed as an artifact (P
in Figure 4), expressed to correspond to Formula (10).

5.2 SyMC tool

We use an initial prototype of our SyMC tool to automatically

execute Steps 1-3 of the proposed methodology in Figure 4. The

tool is implemented in Python, and the source code is available on

github [13].

The implementation of the tool is divided into different modules.

The module that automates Step 1 of the proposed methodology

provides complete automation for the following features: i) de-

termining the fundamental sample time for the discrete-time and

hybrid Simulink models, ii) the generation of the path that describes

the evolution of the signals until the predefined bound k, which
is specified in the configuration file, and iii) calculation the size of

reachability diameter (CT) for linear compositions. In the current

version of the SyMC tool we assume a simplified Simulink model

created based on real one. The simplified model file contains the

same information as the original one, however, the information is

structured in JavaScript Object Notation (JSON) format such that

the model can be parsed with minimal effort. It is important to note

that this is due to purely technical reasons (lack of developers) and

does not affect the proposed methodology in any way. During Step

2, the tool automatically determines the block type and instantiates

the corresponding blockRoutine(). It is important to notice that the

implementation of this module is inherently incomplete, as it is not

feasible with the available resources to encode all the Simulink sup-

ported block types blockRoutines(). Nevertheless, for the purpose of
analyzing the BBW model, all of the relevant blockRoutines() have
been encoded and the transformation of the atomic blocks is fully

automated. Lastly, during this step, the encoding of the invariance

properties is added to the generated reachable state space.

During the last step, that is Step 3, the generated SMT-LIB script

is analyzed using Z3 via the provided Python API (Z3Py), which

enables seamless integration of the latter into the SyMC tool.

6 APPLICATION

In this section, we present in detail the application of the SyMC

tool on the BBW industrial prototype. A snapshot of the original

BBW model is given in Figure 5. The intended purpose is to give a

glimpse of the size and complexity of the model at the root level.

In order to inspect the model in details, we refer the readers to the

SyMC code repository.
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Figure 5: Brake by Wire Simulink model.

6.1 Transformation of BBW

We use our SyMC tool to analyze the BBW model based on the

simplified Simulink model.All of the blocks in the model are either

discrete-time (delay or feedthrough) or feedthrough blocks with

no sample time. Eventually, these blocks are also transformed into

discrete-time blocks during the model optimization (see Section

5.1). The set of sample times in the model includes the following

values: 5, 10 and 20, each given in milliseconds (ms). Consequently,

the fundamental sample time for the model is 5 ms, meaning that

blocks are sampled at each 1st, 2nd or 4th fundamental time steps.

The atomic Simulink blocks are predominately of the following

categories: arithmetic operators (Add, Subtract, Divide, Multiply,
Gain), logical operators (<, ≤, =, >, ≥, if-then-else), Constant, De-
lay, Saturation, etc. These types of blocks belong to the library of

standard Simulink blocks and as such are supported by our tool.

Additionally, the model contains blocks for which the automatic

transformation is not supported in at the moment, hence manual

intervention is required. Of these types, we have the following

blocks: LookUp Table and State-flow diagrams.

The internal structure of the BBW contains both linear and

feedback-loop compositions, as it can be seen in Figure 5. The fig-

ure does not depict the actual complexity of the feedback loops, as

once one goes into the subsystem blocks (Vehicle_Body_Wheels, col-
ored in green, or the ABS_XX_Wheel denoted with white), the loops

become much more complicated. The complex structure, combined

with the number of missing features of the tool, such as the one for

the automatic computation of the CT for feedback loop composi-

tions, prevent us to precisely determine whether BBW’s bounded

invariance checking is complete or not for all requirements. For

properties which are specified over the portion of the model that

contains a feedback loop, we perform invariance checking over

bounded paths of length 40 execution steps, that is, a duration of

200 ms expressed in absolute time.

6.2 Application results

All possible bounded execution paths of 40 steps have been gener-

ated in approximately 2 seconds on a standard Macbook Pro laptop

machine running OSX 10.10.5, with the following hardware charac-

teristics: 2.6 GHz Intel Core i5 CPU and 8 GB of RAM. The bound

of 40 steps was used because it was the maximum size for which

the SMT analysis terminates on the specified machine. The analysis

model, that is, the SMT-LIB script is composed of 15319 assertions,

out of which exactly 8000 represent variable declarations and 7278

represent constraints over the set of variables.

The generated model is verified against the following two safety

requirements, encoded as invariance properties:
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P1 The value of the brake pedal position shall not exceed its max-
imal value of 100.

P2 If the slip rate exceeds 0.2, then the applied braking torque
shall be set to 0.

The compositions of Simulink blocks that contribute to property

P1 are of type linear composition of feedthrough blocks only. From

earlier, we know that CT of such compositions is k = 0, meaning

that the analysis of the generated path is complete, and the result

is a full guarantee that P1 holds. The composition of blocks that

contributes to property P2 on the other hand, contains a feedback

loop, consequently for analyzing the model against P2, we apply
the incomplete bounded invariance checking procedure.

The verification of both of the above properties over the gener-

ated path took approximately 8.5 and 9.7 seconds, respectively. The

results deem that P1 is indeed an invariance property of the BBW

Simulink model. Similarly, P2 is proven correct over the bounded

path of k = 40 execution steps, with no information about its cor-

rectness beyond this limit (due to our theoretical results).

To demonstrate a case of finding a violation, we modified P1 to

create P1’ as follows: “The value of the brake pedal position shall
not exceed its maximal value of 10".When the property is checked

against a model, a violation is detected and the input is synthesized

within 25 seconds.

7 RELATEDWORK

There is an increasing body of work on the formal verification

of Simulink models. We compare our work to other approaches

based on BMC, as well as to other related types of formal analysis

techniques. We focus primarily on formal verification of Simulink

models at design time.
5Schrammel et al. [25] show that BMC has a great potential for

verification on industrial systems. Their approach, which is based

on incremental BMC, yields encouraging results when validated on

industrial use-cases. The difference compared to our work is that

they focused on the verification of the actual code implementation,

while our approach targets the verification of design-time models.

Chaves et al. [6] propose the DSVerifier tool for verification of digi-

tal systems with respect to overflow, limit cycle, stability, etc. As an

input, the tool accepts a digital system design specified in MATLAB

from which an ANSI-C code is generated and passed into a highly

efficient BMC tool. Herde et al. [16] propose an analysis method

for dynamic behavior of safety-critical system based on HySAT.

Compared to our work, they translate the behavioral system into a

hybrid model, which is analyzed using bounded reachability. The

approach guarantees absence of errors until some predefined bound

k (which is not necessarily a CT), but not beyond that. In compar-

ison to this, we also discuss different compositions of Simulink

blocks and completeness of bounded invariance checking for the

same. Similarly, Minopoli and Frehse [22] translate Simulink mod-

els into an intermediate SL2SX model using the SpaceEx translator.

The SL2SX model can then be translated into number of formal no-

tations based on hybrid automata, such as for example HyDI model

that can be checked using the HYCOMP tool [7]. The Simulink to

SL2SX translation is limited to the block of discrete-time type and is

missing support for commonly used blocks industrial models such

as Mux, DeMux, etc. Additionally, the approach has been applied

on a Simulink models of relatively moderate size, thus the scope of

the applicability remains an open question. In comparison, in our

approach we: i) avoid the intermediate encoding as we generate

the paths directly from the Simulink model, ii) successfully deal

with structural elements (Mux, DeMux, etc.) and iii) we retain the

possibility to use various analysis tools as the paths are encoded

as a set of assertions encoded in SMT-LIB, a format suitable as

input to most of the modern SMT solvers. Bauch et al. [3] propose a

hybrid approach based on a combination of explicit model checking

with SAT-based representation of the variables, based on a set of

possible evaluations. To model the valuations of the variables in

the system, they rely on the theory of bit vectors. In contrast to

this, in our approach we deem the system safe by showing that

refutation of the invariance properties is not possible for all possi-

ble inputs and executions, according to the principle idea of BMC.

Approaches based on statistical model checking are being proposed

as a compromise between the exhaustive verification using sym-

bolic model checking and simulation [18] [14]. Such approaches

are useful for establishing probabilistic estimation for the correct-

ness of the underlying model, but any information beyond that

is not available. Compared to these approaches, our approach for

Simulink models shows the following advantages: i) the ability to

verify certain invariance properties (such as P2 from Section 6) over

a complete reachable state-space or over bounded one and ii) ability

to generate a counter-example in cases the property is violated. On

the other hand, our approach is applicable to invariance properties,

which represents a subset of all the possible properties that can be

verified using any of the above model-checking-based verification

techniques.

As other related approaches, we list the following. Reicherdt

and Glesner [24] propose a theorem-proving approach based on

the Boogie tool in order to check whether the model invariants

are preserved in all possible executions. Despite having provided

full automation for the transformation and analysis phases, the

approach is suitable only for Simulink models composed of discrete-

time feedthrough blocks only, which substantially limits its range of

applicability. Liu et al.[20] combine statistical debugging and model

slicing in order to improve fault localization in Simulink models,

opening an interesting direction for searching the state space more

efficiently, which might be compatible with our approach.

8 CONCLUSIONS

In this paper, we have presented an approach for invariance check-

ing of Simulink models based on the principles of BMC using satis-

fiability modulo theories. Our main contributions are on two main

fronts: first, we show that we can automatically generate finite

execution paths based directly on the Simulink model, and second,

we show that there are certain Simulink designs for which the

bounded invariance procedure is complete. In order to determine

whether the invariance checking is complete, we have identified

the commonly used Simulink designs and block types based on two

industrial models. We complement our approach with a tool, called

SyMCwhich automatically generates the set of finite bounded paths

of a Simulink models, calculates the CT for linear compositions and

integrates Z3 such that the analysis can be automatically executed.
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For determining the completeness of the bounded invariance

checking for certain classes of Simulink models, we have first an-

alyzed the structure of two industrial systems, namely ASL and

BBW from Volvo GTT, Sweden, from which we have identified

the commonly used block types and compositions of blocks. As a

result, we have identified three broad categories of Simulink blocks:

feedthrough, delay and SFunction and two common compositions:

linear and feedback-loop compositions. Based on the identified com-

positions and blocks, we first prove the completeness of the bounded

invariance checking procedure for the linear compositions, by prov-

ing the existence of a CT. For the feedback-loop compositions, a

CT does not exist in the general case, however, there exists a spe-

cial subclass of feedback-loop compositions for which a CT does

exist. To automate the proposed approach, in this paper we have

performed the following: i) we have introduced an automated pro-

cedure (implemented in the SyMC tool) for generating execution

paths of finite length based on the Simulink model and an execution

order of the blocks, ii) we propose a template-based encoding of

the execution paths into the SMT-LIB format suitable for analysis

using the Z3 SMT solver. For validation, we have applied our SyMC

tool on the Simulink model of BBW, which we prove to be correct

with respect to two safety properties.

There are several directions for future research around the ap-

proach proposed in this paper. First, we need to improve the SyMC

tool onmultiple fronts in order to: i) use the original Simulinkmodel

as an input into the tool, and ii) optimize the generated paths such

that the same information is encoded using less states (less SMT

variables and constraints). For the latter, we can consider symbolic

execution [5] for removing unfeasible paths, and model slicing [23]

for removing non-relevant parts with respect to certain properties.

The proposed improvements could potentially enable us to consider

more industrial systems for validation, in order to further test the

boundaries of the applicability of our approach. Additionally, we

also aim to implement the automation of the CT calculation for

the feedback loop compositions. We also aim to tackle the problem

of incompleteness of the invariance checking procedure for the

feedback-loop designs by complementing the proposed approach

with static analysis of the model [12]. Finally, we aim to investi-

gate whether we can extend the approach for the verification of

invariance properties with timing information.
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