
Automated SMT-based Consistency Checking of Industrial
Critical Requirements

Predrag Filipovikj
Mälardalen University

Västerås, Sweden
predrag.filipovikj@mdh.se

Guillermo Rodriguez-Navas
Mälardalen University

Västerås, Sweden
guillermo.rodriguez-navas@mdh.se

Mattias Nyberg
Scania AB CV

Södertälje, Sweden
mattias.nyberg@scania.com

Cristina Seceleanu
Mälardalen University

Västerås, Sweden
cristina.seceleanu@mdh.se

ABSTRACT
With the ever-increasing size, complexity and intricacy of
system requirements specifications, it becomes difficult to
ensure their correctness with respect to certain criteria such
as consistency. Automated formal techniques for consistency
checking of requirements, mostly by means of model check-
ing, have been proposed in academia. Sometimes such tech-
niques incur a high modeling cost or analysis time, or are not
applicable. To address such problems, in this paper we pro-
pose an automated consistency analysis technique of require-
ments that are formalized based on patterns, and checked
using state-of-the-art Satisfiability Modulo Theories solvers.
Our method assumes several transformation steps, from tex-
tual requirements to formal logic, and next into the format
suited for the SMT tool. To automate such steps, we pro-
pose a tool, called PROPAS, that does not require any user
intervention during the transformation and analysis phases,
thus making the consistency analysis usable by non-expert
practitioners. For validation, we apply our method on a set
of timed computation tree logic requirements of an industrial
automotive system called the Fuel Level Display.

CCS Concepts
•Computing methodologies → Model verification
and validation; Modeling and simulation; Model develop-
ment and analysis;

Keywords
Requirements Consistency Analysis, Formal Methods, SMT,
Z3

1. INTRODUCTION
Late detection of errors in the requirements specifications
of industrial systems often results in a redesign or reimple-
mentation of certain parts of the system, which leads to
a considerable increase of costs. For these reasons, indus-

Copyright is held by the authors. This work is based on an earlier work: SAC’17
Proceedings of the 2017 ACM Symposium on Applied Computing, Copyright
2017 ACM 978-1-4503-4486-9. http://dx.doi.org/10.1145/3019612.3019787

try has high demands for techniques that enable early de-
bugging of system specifications. This paper addresses the
problem of detecting inconsistencies within system specifi-
cations, which occurs whenever the set of requirements is
not realizable as such, due to internal contradictions. For
illustration, let us look at the following example: assume
a system S that at any time operates in either of the two
mutually exclusive operational modes M1 and M2. The mode
change in the system is event triggered and is described by
the following requirements: R1: “If the event P is observed,
the system enters the M1 operational mode and remains in
the same for the next 5 time units”; R2: “Whenever event
R occurs, it is immediately followed by an event Q”; and
R3: “If event Q occurs, the system must switch to M2 op-
erational mode within 2 time units”. The system specifica-
tion does not impose any restriction on the occurrence of
the events P, Q and R, meaning that there are two ways
in which the system specification can be satisfied: trivially
and non-trivially. Trivial satisfaction means that one con-
structs a system S where events P, Q and R never occur.
For such system it is impossible to violate the above system
specification. However, we are interested in the following
case: can the system specification be satisfied for a system
in which events P, Q, R do occur, and moreover they occur
simultaneously? Intuitively, the answer to this question is
negative, because the satisfaction of the specification would
require the system to be simultaneously in modes M1 and M2

somewhere within 2 time units after the occurrence events
of P and Q.

For simple scenarios such as the one shown above, expert
human-based debugging is usually enough to detect possi-
ble inconsistencies. However, the problem arises when one
needs to deal with large system specifications composed of
several tens or even hundreds of requirements. For such
cases, a tool-supported approach, for instance based on for-
mal methods, is needed. Most of the existing consistency
analysis approaches [12, 3, 24] are based on model check-
ing. Despite the methods being systematic and exhaustive,
some of their characteristics, such as the complexity of con-
structing the analysis model or the analysis time, which in
some cases has been reported to take days, limit the poten-
tial of such approaches to be adopted by industry. A less
exhaustive, yet systematic and lightweight, approach could

APPLIED COMPUTING REVIEW DEC. 2017, VOL. 17, NO. 4 15

be more suitable for debugging the system specifications at
early stages of system development, prior to the existence of
any behavioral or structural model of the system.

As a potential solution to this need, in this paper, we pro-
pose a completely automated methodology based on Sat-
isfiability Modulo Theories (SMT) [8] for the consistency
check of requirements specifications, starting from their de-
scription in natural language. We apply specification pat-
terns [10, 21] to formalize the textual requirements into
temporal logic, which are later transformed into a set of
assertions encoded as a Satisfiability Modulo Theories Li-
brary (SMT-LIB) script [5] that can then be fed to an SMT
solver of interest. For performing the consistency analysis
in this paper we use the Z3 SMT solver [7]. Our idea of
SMT-based methodology has already been discussed in our
previous work [16], which in this paper is extended in two
ways. First, the extension addresses the problem of automa-
tion. For that purpose, we propose a tool, called PROPAS,
which automates the transformation of temporal logic for-
mulas into SMT-LIB assertions suitable for analysis. Rather
than encoding the SMT version of the system specification
directly in a tool’s particular language, such as Z3 Python
script, PROPAS generates a tool-independent encoding in the
SMT-LIB language, which can be used as input to most
modern SMT solvers that would fit the purpose. This con-
stitutes the second extension of our work, as compared to
our previous paper [16].

The paper continues as follows. In Section 2 we introduce
the needed preliminaries, such as timed computational tree
logic (TCTL), specification patterns, the formal definition of
consistency and the satisfiability modulo theories together
with the Z3 tool. Next, in Section 3 we describe the Fuel
Level Display (FLD) system, which is an operational indus-
trial system used as a working example for validating the
proposed methodology, described in Section 4. In Section 5
we present our tool, PROPAS. Section 6 shows the applica-
tion of PROPAS and our method on checking the consistency
of the FLD example, using Z3, followed by discussion on the
strengths and limitations in Section 7. We compare to re-
lated work in Section 8, and conclude the paper in Section 9,
where we also outline future research directions.

2. PRELIMINARIES
In this section we introduce the concepts that are used in the
rest of the paper. First, in Section 2.1 we introduce the com-
putational tree logic (CTL) and its timed extension (TCTL),
suitable for the specification of real-time systems, followed
by an overview of the specification patterns that represent
a user-friendly way to formally specify system requirements
for non-experts in formal methods in Section 2.2. Next, in
Section 2.3 we introduce a formal definition for consistency
of a set of requirements encoded as temporal formulas, and
finally in Section 2.4 we give an overview of the Satisfiability
Modulo Theories (SMT) method and the Z3 tool used in our
work.

2.1 (Timed) Computational Tree Logic
Computation tree logic (CTL) is a temporal logic [20] used
for the formal specification of finite-state systems. The in-
terpretation of a CTL formula is defined over a branching
model M that consists of a non-empty set of states S, a
successor relation R that assigns a set of successor states to
each state and a labeling function Label that assigns a set of
atomic propositions to each state. Timed CTL (TCTL) is
a timed extension of CTL suitable for specifying timed sys-
tem properties [1]. The concept of time is modeled through a
set of non-negative real-valued variables called clocks, ma-
nipulated by clock formulas expressing constraints over the
clocks. The clocks are incorporated into the notion of state,
which includes the model’s location and clock valuation that
determines the validity of clock constraints.

The syntax of CTL consists of path quantifiers (All, Exists),
and path-specific temporal operators. The universal path
quantifier “A” stands for “all paths”, while the existential
quantifier “E” denotes that “there exists a path” from the
set of all future paths PM (s) starting from a given state s.
A valid CTL formula is of type ϕ U ψ, where U (“until”)
is the basic path operator, which is combined with either
of the two path quantifiers. The rest of the path-specific
temporal operators are defined based on the U operator,
as follows: the F (Future) operator, which denotes that a
formula eventually becomes true (Fϕ ⇔ true U ϕ) and the
G (Globally) operator which denotes that a given formula
is valid in all states along a given path (Gϕ ⇔ ¬F¬ϕ) [1].
There exists also a weaker version of the U operator called
“weak-until” denoted as W , with the following semantics:
ϕ W ψ ≡ (ϕUψ)∨Gϕ. It basically denotes a formula where
the ψ might hold, thus ϕ must hold in all future states.

Timed CTL defines a timed version for each of the path-
specific temporal operators based on clock constraints. In
this paper, we use the following notation for timed path-
specific operators: Oper∼T , where: Oper ∈ {U, W, F, G};
∼∈ {=, <,≤} and T being a positive integer bound on clock
variables. For instance, the formula AF≤Tϕ denotes that
on all execution paths starting from some initial state s0,
ϕ eventually becomes true within T time units. For more
details we refer the reader to previous work [1] [20].

2.2 Specification Patterns
The Specification Pattern System (SPS) was introduced by
Dwyer et al. [9] to aid practitioners not skilled in formal
methods to formally specify system properties. The pro-
posed approach is based on the assumption that systems’
specifications are framed within reoccurring solutions, from
which a set of patterns can be extracted and saved for future
reuse.

The initial SPS catalog [9, 10] is compiled by analyzing more
than 500 requirements from various domains. It contains
13 qualitative patterns, divided into two categories: order
and occurrence, expressed in various temporal logics. Each
pattern is characterized by two main parts: a behavior that
it captures, and a scope that denotes the extent of program
execution in which the behavior must hold. According to
Dwyer et al. [10], there are five scopes defined as follows:
Globally - the entire program execution, Before Q - before

APPLIED COMPUTING REVIEW DEC. 2017, VOL. 17, NO. 4 16

the first occurrence of R, After Q - after the first occurrence
of Q, Between Q and R - any part of program execution
between events Q and R, After Q until R - similar to the
previous, except that the occurrence of R is not mandatory.

Each pattern is expressed as a combination of literal and
non-literal terminals. The non-literal terminals can be ei-
ther boolean expressions that describe system properties or
integer values that capture timing aspects. The rest of the
pattern consists of literal terminals, which are fixed and can-
not be changed.

In subsequent research endeavors, the initial SPS catalog
has been extended in different ways. In one of the early
extensions proposed by Konrad and Cheng [21], the catalog
is enriched with real-time specification patterns intended to
support the specification of real-time systems. The same ex-
tension introduces the constrained natural language (CNL)
view of the patterns in addition to the various formalisms,
such that properties become accessible to a broader set of
users. There are other extensions of the specification pat-
terns, such as the one by Grunske [17] which introduces
probabilistic patterns. In this paper, we use only the pat-
terns provided in the initial SPS catalog [9, 10] and the
real-time extension by Konrad and Cheng [21].

2.3 Formal Definition of Consistency
Assuming that the system requirements specification has
been encoded as a set of logical formulas, we can consider
the following definition to check its consistency:

Definition 1 (Inconsistent specification). Let Φ =
{ϕ1, ϕ2, ..., ϕn} denote the system requirements specification,
where each of the formulas ϕ1, ϕ2, ..., ϕn encodes a require-
ment, respectively. We say that the set Φ is inconsistent if
the following implication is satisfied: ϕ1 ∧ ϕ2 ∧ ... ∧ ϕn =⇒
False.

From the definition above, it follows that a system require-
ments specification is inconsistent if there does not exist a
truth valuation of the conjunction of all the formulas in the
specification. To disprove the inconsistency, it is enough to
provide a witness set of valuations of variables that satisfies
the conjunction of all the formulas ϕ1 ∧ ϕ2 ∧ ... ∧ ϕn.

2.4 Satisfiability Modulo Theories, SMT-LIB
and Z3

The problem of determining whether a Boolean formula can
be made true by assigning true/false values to the con-
stituent Boolean variables is called the Boolean satisfiability
problem (SAT). If a given Boolean formula is satisfiable, the
decision procedure generates a model that contains the val-
uation of the variables such that the formula is true. In
the opposite case, that is, when the formula is not satisfi-
able, there exists no valuation for the constituent variables
that will make the formula true. Satisfiability Modulo The-
ories (SMT) are an extension of SAT, in which some of the
symbols are interpreted by a background theory [8]. One
such example is the theory of arithmetic that restricts the
interpretation of symbols to: {+, -, ≤, 0, 1}.

For SMT-based consistency analysis, in this paper we use
the Z3 tool [7] from Microsoft Research, which is a state-of-

the-art SMT solver and theorem prover. The input to the
tool is a script composed of assertions that can be either
declarations or formulas. The assertions are specified us-
ing the SMT-LIB language [5], which represents a standard
input supported by most of the modern SMT solvers. Dec-
larations can be either constants or functions. Constants
are represented as uninterpreted functions with no inputs,
whereas the functions are represented as uninterpreted func-
tions that have one or more inputs. The data types in Z3
are called sorts, and the set of predefined ones consists of:
Int, Real, Bool and Function. The set of sorts can be
additionally extended by user-defined data types. The as-
sertions in SMT-LIB language are specified in a Prolog-like
manner. For example, an uninterpreted function fun1 that
accepts one parameter param1 is specified as follows: (fun1
param1). The formulas express constraints over the declared
variables, which are added to the internal stack using the
assert command. There are two types of quantifiers: a
universal (denoted as forall) and existential (denoted ex-

ists) one. For optimizing the decision procedure, there is a
number of tactics provided by Z3.

The command check-sat determines whether the current
formulas on the Z3 stack are satisfiable or not. If the set
of formulas is satisfiable Z3 returns SAT, that in our case
proves the analyzed consistency. If the set of formulas is not
satisfiable, Z3 returns UNSAT, thus proving that the set of
requirements is inconsistent. In cases when the Z3 cannot
determine if the set of formulas is satisfiable or not, it returns
UNKNOWN. When the command check-sat returns SAT,
an additional command get-model can be used to retrieve
an interpretation that makes all formulas on the Z3 internal
stack true. In case of an UNSAT, the minimal inconsistent
set of formulas is retrieved by calling the unsat-core com-
mand.

3. MOTIVATING EXAMPLE
In this section we describe the Fuel Level Display (FLD)
system, whose requirements we want to analyze for consis-
tency.

FLD is an operational system installed in all heavy-load ve-
hicles produced by Scania, Sweden. The main functionality
of the system is to estimate the remaining fuel in the fuel
tank and display the correct value to the driver. It is realized
through a cooperation between a number of computational
components, sensors and actuators.

The estimation of the remaining fuel in the tank is imple-
mented as a software function installed inside the Coordi-
nator (COO) Electronic Control Unit (ECU). The value is cal-
culated based on the following inputs: remaining fuel in the
fuel tank (FT), provided by the fuel sensor (fuelSensor),
and the current fuel consumption provided by the Engine
Management (EMS) ECU. The system is classified as safety
critical, meaning that its correct operation must be assured
at all times. The system’s failure may lead to hazardous sit-
uations that potentially can cause severe material damage
to the environment or even endanger human lives.

The simplified architectural breakdown of the FLD function-
ality is given in Figure 1. The design is based on the concept
of element, which is an extension over Heterogeneous Rich

APPLIED COMPUTING REVIEW DEC. 2017, VOL. 17, NO. 4 17

FLD

PBS
EMS

ICL

COO

FUEL

ANIN

DMAC

HW

actualParkingBrake
indicatedFuelVolume

CAN2

dmacCH

actualFuelVolume

SG

F
S

R
I
C

L

MIDD

SSR1
DMAC

SSR2
DMAC

FT

fuelSensor

Figure 1: Simplified version of the high-level
architecture of the Fuel Level Display system

Components [26]. All the entities in the system design, be
they physical or logical, are represented via elements. In
the architectural design given in Figure 1 the elements are
denoted using rectangles (ex: Fuel, PBS, ICL, ect.). The
communication between an element and its environment oc-
curs via its interface, represented as a collection of ports,
denoted with gray rectangles. The behavior of the compo-
nents is expressed via a set of constraints over their ports,
specified according to the contract-based approach by using
the assumption-guarantee type assertions [26]. For illustra-
tion, we list a subset of FLD requirements that we will model
and analyze for consistency.

SG If actualParkingBrake (aPB) is false, then in-
dicatedFuelVolume (iFV), shown by the fuel
gauge, is less than or equal to actualFuelVol-
ume (aFV).

FSRICL If it has not passed more than 1s since the
last time CAN message DashDisplay (DD) ap-
peared on CAN2 CAN bus, and the DD mes-
sage is valid, then the iFV, shown by the fuel
gauge, corresponds to FuelLevel (FL) signal
value from the DD message.

SSR1
DMAC The Direct Memory Access (DMA) channel

that corresponds to the input value of dmacCH
when Dmac enableCh() function is called, is en-
abled when Dmac enableCh() function finishes
its execution.

SSR2
DMAC The DMA channel that corresponds to the in-

put value of dmacCH when Dmac disableCh()
function is called, is disabled when Dmac
disableCh() function finishes its execution.

Step	
 1 Step	
 2 Step	
 3 Step	
 4
Text	
 to	
 TCTL TCTL	
 to	
 FOL Encoding	
 in	
 	

SMT-­‐LIB SMT	
 Analysis

sat	
 (consistent)

unsat	
 (inconsistent)

SMTLibReqSeSAMM	
 Specifier

PROPAS

unsat-­‐core

model

Figure 2: PROPAS: Automated SMT-based
consistency checking of requirements specifications.

4. SMT-BASED METHODOLOGY FOR
CONSISTENCY ANALYSIS OF RE-
QUIREMENTS

Our methodology for consistency checking of requirements
is illustrated in Figure 2. It consists of four steps given as
follows: in Step 1, the system requirements are specified in
constrained natural language (CNL) via the Specification
Pattern System (SPS) [10] [21]. The formalized behavior
encoded in the specification patterns and the user input are
automatically combined to produce the temporal formulas,
expressed in TCTL [1]. Since the SMT solvers operate over
first-order logic (FOL) formulas, in Step 2, the TCTL pat-
terns are transformed into FOL formulas by instantiating
the semantics of path-specific temporal operators and path
quantifiers. The FOL formulas are then encoded into SMT-
LIB assertions in Step 3. In order to facilitate the analysis,
the SMT-LIB assertions are additionally optimized by using
a number of abstraction rules. Finally, in Step 4, we per-
form the consistency analysis using a state-of-the-art SMT
solver (e.g. Z3), which returns the consistency verdict for
the considered set of requirements.

In case the conjunction of the requirements is consistent
(SAT verdict), the tool returns a model that contains a valu-
ation of the system variables satisfying the analyzed require-
ments specification; in the opposite case (UNSAT), the tool
generates the minimal inconsistent set (unsat-core com-
mand) containing the conflicting requirements. The trace-
ability of the requirements starting from their natural lan-
guage form until the SMT-LIB assertions used for analysis
is assured by assigning a unique identifier which is preserved
during all steps. To make the methodology potentially use-
ful in industrial settings, we propose a tool called PROPAS

that automates all the steps from the proposed method.
The automation allows one to perform consistency analysis
of their system specification with no intervention during the
transformation and analysis steps, making PROPAS a suitable
candidate for industrial adoption.

APPLIED COMPUTING REVIEW DEC. 2017, VOL. 17, NO. 4 18

4.1 Step 1: Text to TCTL
The set of FLD requirements used in this study is originally
specified in unrestricted natural language using a general-
purpose text editor. Such free-text specifications in natural
language are readable and expressive, yet sometimes am-
biguous and definitely not amenable to automated analysis.
In this section, we describe Step 1 of the method proposed
in Figure 2, during which the free-text specification is con-
verted into a more disciplined format with fixed structure
and precisely defined semantics.

The formal system specification often represents a bottle-
neck as the industrial practitioners lack expertise in formal
methods required for properly formalizing system specifi-
cations. To alleviate the problem, we adopt the specifica-
tion patterns approach, which is considered a user-friendly
formal specification approach that is expressive enough to
capture requirements in the automotive domain [15] [25].
In addition to this, we use our in-house tool called SeSAMM

Specifier [14] that provides a user-friendly interface for re-
quirements specification based on the specification patterns.
The tool also offers mechanisms for validation of formalized
behaviors and automatic generation of the formal counter-
part based on the semantics attached to the specification
patterns and the user input. In this paper, we use TCTL
to formally encode the system requirements. The decision
is justified by the fact that TCTL is suitable for capturing
real-time requirements, which are part of the FLD system
specification. Moreover, a simplified subset of TCTL can
be used for model checking eventual system realizations, for
instance by using Uppaal [22]. Below, we show how the set
of FLD requirements given in Section 3 is encoded in CNL
using the specification patterns and SeSAMM Specifier, fol-
lowed by their TCTL encoding, as follows:

FLD requirements expressed in CNL via the SPS:

SG Globally, it is always the case that when the
aPB = False holds, then the iFV ≤ aFV holds
as well.

FSRICL After CAN2 = DD & DD 6= ERR holds until
CAN2 6= DD, it is always the case that iFV =
DD holds for 1s.

SSR1
DMAC Globally, it is always the case that when

Dmac EnableCh(chID) = True holds, then the
dmacCH(chID) = True holds as well.

SSR2
DMAC Globally, it is always the case that when

Dmac DisableCh(chID) = False holds, then the
dmacCH(chID) = False holds as well.

FLD requirements in TCTL:

SG AG(¬ aPB ⇒ iFV ≤ aFV)

FSRICL AG(CAN2 = DD ∧DD 6= ERR⇒
A(iFV = DD W≤100 CAN2 6= DD))

SSR1
DMAC AG(Dmac enableCh(chU32)⇒ dmacCH(chID))

SSR2
DMAC AG(Dmac disableCh(chU32) ⇒

¬dmacCH(chID))

P5
8%

P4
19%

P3
11%P2

8%

P1
54%

Figure 3: Pattern distribution for the formalized
FLD requirements

We formalize the complete set of FLD requirements using
only five specification patterns, as shown in the list below.
The frequency with which the patterns occur, that is the
percent of the total FLD requirements specified using a spe-
cific pattern is given in Figure 3. The results are aligned
with the earlier formalization attempts [15] [25], revealing
that, in principle, a small subset of SPS patterns suffices to
express the majority of automotive systems’ requirements.

P1: Globally, Universally: AG(ϕ)

P2: Timed Globally, Universally: AG(AG≤T (ϕ)⇒ ψ)

P3: Globally, Response: AG(ϕ⇒ AF≤Tψ)

P4: After ϕ Weak-until θ Universally ψ:
AG(ϕ⇒ A(ψ W≤T θ))

P5: Timed After ϕ Weak-until θ Universally ψ:
AG(AG≤T (ϕ)⇒ A(ψ W≤T θ))

4.2 Step 2: TCTL to FOL
In this section, we present Step 2 of the methodology, during
which the TCTL patterns are transformed into FOL formu-
las. The importance of this transformation is twofold: i)
it bridges the semantic gap between TCTL formulas and
SMT-LIB assertions, and ii) ensures the conservation of in-
formation between the two. This step is performed on a
pattern level, meaning that once a pattern is transformed,
all the requirements instances from that pattern recall the
result from the structured derivation of the pattern. Due to
page limitation and similarity of proofs, in this section we
present only one lemma that shows the structured derivation
of two of the TCTL patterns into equivalent FOL formulas.
The rest of the patterns are transformed in a similar fashion.

The TCTL to FOL transformation is carried out by instanti-
ating the semantics of the TCTL operators according to the
definitions given by Katoen [20], assuming a timed transi-
tion system as the underlying semantic model of our system.
The semantics of a TCTL formula is based on the following
concepts: σ denotes a single path from the set of all paths
PM (s) starting from a given position s. Each path σ is rep-
resented as a set of positions, denoted as Pos(σ). A position
in the path is a pair (i, di), where i is the location number,
whereas di is the time distance. The location determines the
set of atomic propositions that are valid for that position,
whereas the time distance is a real number that corresponds
to the time elapsed during the delay transitions as compared

APPLIED COMPUTING REVIEW DEC. 2017, VOL. 17, NO. 4 19

from the initial state in the path; a set of such points char-
acterizes the states traversed along σ while going from state
si to the successor si+1 for any i ∈ N. The time elapsed on a
path relative to the initial state s0 to any state si is defined
as:

∆(σ, 0) = 0,

∆(σ, i+ 1) = ∆(σ, i) +

{
0, for discrete transition,

di, for delay transition.

The elapsed time on a path is measured using real-valued
variables called clocks, which increase with rate one. We
denote a clock valuation by v. The value of the clocks can
be manipulated only through a reset action (reset z in v),
which sets a set of clocks to zero. The definition of the reset
function is given as follows:

(reset z in v)(y) =

{
v(y), if y 6= z,

0, if y = z.

Lemma 1 below proves the conjectured equivalent FOL form
of pattern P4 in TCTL, as a structured derivation that uses
the FOL counterpart of a P1, which is also stated by Lemma
1. The proof for (1) has been omitted due to space limitation
and the fact that similar proof exists already [20].

Lemma 1 (P1, P4 into FOL). Given a transition system
M, predicates ϕ, ψ, θ, a state s of M, and ω a clock valuation
formula, the following two equivalences hold:

(1)

s, ω |= AG≥0(ϕ)

⇔
∀σ ∈ PM (s).(∀(i, d) ∈ Pos(σ).(σ(i, d), (z = ∆(σ, i)) |= ϕ))

(2)

s, ω |= AG≥0(ϕ⇒ A(ψ W≤T θ))

⇔
∀σ ∈ PM (s).(∀(i, d) ∈ Pos(σ).σ(i, d), (z = ∆(σ, i)) |= (¬ϕ ∨
(∀σ′ ∈ PM (σ(i, d)).(∃(j, d′).(i < j ∨ (j = i ∧ d ≤ d′)) ∈ Pos(σ′)
.σ′(j, d′), (z = ∆(σ′, j)) |= (θ ∧ z ≤ T)) ∧ (∀(k, d′′).(k < j∨
(k = j ∧ d′′ ≤ d′)) ∈ Pos(σ′).σ′(k, d′′), (z = ∆(σ′, k)) |= (ψ∧
z < ∆(σ′, j)))) ∨ (∀σ′ ∈ PM (σ(i, d)).(∀(j, d′)(i < j ∨ (j = i ∧
d ≤ d′ ≤ d+ T) ∈ Pos(σ′).σ′(j, d′), (z = ∆(σ′, j)) |=
(ψ ∧ z ≤ T))))))

Proof.

(2)

s, ω |= AG(ϕ⇒ A(ψ W≤T θ))

⇔ {AG⇔ AG≥0; Rule: ϕ⇒ ψ ⇔ ¬ϕ ∨ ψ, definition of W≤T }
s, ω |= AG≥0(¬ϕ ∨A(ψ U≤T θ) ∨AG≤T (ψ))

⇔ {Rule: AG≤Tϕ⇔ ¬EF≤T¬ϕ, definition of F≤T }

s, ω |= AG≥0(¬ϕ ∨A(ψ U≤T θ) ∨ ¬E(True U≤T ¬ψ))

⇔ {Definition of U≤T ; let z be a ‘fresh’ clock}
s, ω |= z in AG≥0(¬ϕ ∨A((ψ ∧ z ≤ T) U θ) ∨ ¬E(True

U (¬ψ ∧ z ≤ T)))

⇔ {Semantics of z in ϕ}
s, reset z in ω |= AG≥0(¬ϕ ∨A((ψ ∧ z ≤ T) U θ) ∨
¬E(True U (¬ψ ∧ z ≤ T)))

⇔ {Definition of AG≥T , A(ϕ U ψ), E(ϕ U ψ)}
∀σ ∈ PM (s).(∀(i, d) ∈ Pos(σ).σ(i, d), (reset z in ω)+

∆(σ, i) |= (¬ϕ ∨ (∀σ′ ∈ PM (σ(i, d)).(∃(j, d′)� (i, d)

∈ Pos(σ′).σ′(j, d′), (reset z in ω) + ∆(σ′, j) |= (θ ∧ z ≤ T)

∧ (∀(k, d′′)� (j, d′) ∈ Pos(σ′).σ′(k, d′′), (reset z in ω)

+ ∆(σ′, k) |= (ψ ∧ z ≤ ∆(σ′, j)))) ∨ ¬(∃σ′ ∈ PM (σ(i, d)).

(∃(j, d′)� (i, d) ∈ Pos(σ′).σ′(j, d′), (reset z in ω)+

∆(σ′, j) |= (¬ψ ∧ z ≤ T) ∧ (∀(k, d′′)� (j, d′) ∈ Pos(σ′).
σ′(k, d′′), (reset z in ω) + ∆(σ′, k) |= True))))))

⇔ {Logic, definition of total order, semantics of reset z in ω}
∀σ ∈ PM (s).(∀(i, d) ∈ Pos(σ).σ(i, d), (z = ∆(σ, i)) |= (¬ϕ ∨
(∀σ′ ∈ PM (σ(i, d)).(∃(j, d′).(i < j ∨ (j = i ∧ d ≤ d′))
∈ Pos(σ′).σ′(j, d′), (z = ∆(σ′, j)) |= (θ ∧ z ≤ T))∧

(∀(k, d′′).(k < j ∨ (k = j ∧ d′′ ≤ d′)) ∈ Pos(σ′).σ′(k, d′′),
(z = ∆(σ′, k)) |= (ψ ∧ z < ∆(σ′, j)))) ∨ (∀σ′ ∈ PM (σ(i, d)).

(∀(j, d′)(i < j ∨ (j = i ∧ d ≤ d′ ≤ d+ T) ∈ Pos(σ′)
.σ′(j, d′), (z = ∆(σ′, j)) |= (ψ ∧ z ≤ T))))))

Q.E.D.

The FOL formulas obtained by similar derivations, which
correspond to the rest of the patterns are given below.

P2 ∀σ ∈ PM (s).(∀(i, d) ∈ Pos(σ).σ(i, d), (z = ∆(σ, i)) |= ((∃σ′

∈ PM (σ(i, d)).(∃(j, d′).((i < j ∨ (i = j ∧ d′ ≤ d+ T)) ∈
Pos(σ′).σ′(j, d′), (z = ∆(σ′, j)) |= (z ≤ T ∧ ¬ϕ)) ∨ ψ))))

P3 ∀σ ∈ PM (s).(∀(i, d) ∈ Pos(σ).σ(i, d), (z = ∆(σ, i)) |= (¬ϕ ∨
(∀σ′ ∈ PM (σ(i, d)).(∃(j, d′).(i < j ∨ (i = j ∧ d ≤ d′))
∈ Pos(σ′).σ′(j, d′), (z = ∆(σ′, j)) |= (z ≤ T ∧ ψ)))))

P5 ∀σ ∈ PM (s).(∀(i, d) ∈ Pos(σ).σ(i, d), (z = ∆(σ, i) |=
(¬(∀σ ∈ PM (σ(i, d)).(∀(j, d).(j > i ∨ (j = i ∧ d ≤ d ≤ T)

∈ Pos(σ).σ(j, d), (z = ∆(σ, j)) |= (z ≤ T ∧ ϕ)))) ∨
(∀σ ∈ PM (σ(i, d)).(∃(j, d).(j > i ∨ (j = i ∧ d ≤ d) ∈ Pos(σ).

σ(j, d), (z = ∆(σ, j)) |= (z ≤ T ∧ θ))) ∧ (∀(k, d) ∈ Pos(σ).

((k < j ∨ (k = j ∧ d ≤ d)) ∈ Pos(σ).(σ(k, d), (z = ∆(σ, k)) |=
(z ≤ ∆(σ, j) ∧ ψ)) ∨ (∀σ ∈ PM (σ(i, d)).(∀(j, d).(j > i ∨ (j = i

∧ d ≤ d ≤ d+ T)) ∈ Pos(σ).σ(j, d), (z = ∆(σ, j)) |=
(z ≤ T ∧ ψ)))))))))

Returning to Definition 1, the conjunction of all require-
ments is obtained by instantiating the above patterns in
FOL. Next, the conjunction is encoded as SMT-LIB asser-
tions, which can then be used as an input into an SMT solver
of choice, Z3 in our case, for checking the consistency.

4.3 Step 3: Encoding in SMT-LIB Language
In this section, we present the third step of our methodology,
in which FOL formulas are encoded as SMT-LIB assertions,

APPLIED COMPUTING REVIEW DEC. 2017, VOL. 17, NO. 4 20

which can be analyzed by state-of-the-art SMT solvers. In
this step, we apply the following three encoding rules:

R1: Directly map the FOL constructs into SMT-LIB syn-
tax elements. For instance, mapping the quantifiers (∀
into forall, ∃ into exists, etc.), modeling port values
as functions of time, etc.

R2: Reduce complexity by abstraction: (a) eliminate path
(σ) universal quantifiers, and (b) collect location (i)
and time in location (d) into a tuple position (pos).

R3: Abstract the universally quantified pos = (i, d) to the
universally quantified pos.d.

The process of applying rules R1, R2 and R3 on the set of
patterns from Section 4.2 can be illustrated as follows:

Pi
R1,R2−−−−→ P

′
i

R3−−→ Pi SMT , i ∈ [1, 5]

The application of rule R1 results in an SMT-LIB script
where each assertion corresponds to an individual require-
ment, with quantifiers and Boolean expressions encoded us-
ing SMT-LIB-specific constructs. Due to the underlying
branching model over which the TCTL formulas are inter-
preted (Section 2.1), the assertions are quantified over three
variables: execution path (s-paths), locations and clock val-
uations. However, only the clock quantifiers are bounded
due to the timed-constrained nature of the system specifica-
tion.

The number of quantified variables has a negative impact
on the decidability of the SMT procedure [23]. To remedy
this, we propose an abstraction technique (rules R2 and
R3) that reduces the number of quantified variables in the
assertions, abstracting only the information related to vari-
ables that cannot be sources of requirements inconsistency
(e.g., σ, and i). This is possible because all formulas are uni-
versally quantified over the branches, and there is no fixed
labeling function as the model of the system is not available.
Further, we collect location and time variables into a tuple
position, denoted by pos [20]. To access the location compo-
nent of the position we write pos.i. Similarly, time valuation
in that position is obtained by pos.d.

For the FLD requirements, the path component of all FLD
properties is always universally quantified because all the
requirements are safety requirements, meaning that no in-
consistency can occur due to path quantifiers, as existen-
tially quantified path properties do not exist in our case
study. Therefore, proving consistency on an arbitrary path
of infinite length (chosen via the “select” operator) suffices.
Consequently, the quantified path variable disappears in our
SMT-LIB encoding.

All our patterns rely on semantic models in which progress is
ensured by instantaneous discrete transitions in which loca-
tion index pos.i increases, or via delay transitions, which
model the passage of time while the system remains in
the same location, causing an increase of the time dis-
tance compared to the initial position on the path, that is
pos.d increases. The progress along the path is modeled by
the binary operator “�” that compares positions, defined
as: pos � pos’ ⇐⇒ (pos.i < pos’.j) ∨ ((pos.i =

pos’.j) ∧ (pos.d < pos’.d’)). Possible inconsistencies
can arise from contradicting formulas that should hold in
each position, e.g. ϕ, ψ etc., at or from a certain time point
on.

By applying the rules R1 and R2 explained above we obtain
the following valid abstracted versions of patterns P1-P5:

P1
′

: select σ ∈ PM (s).(∀pos ∈ Pos(σ).pos.i, (z = ∆(σ, pos.i) |= ϕ))

P2
′

: select σ ∈ PM (s).(∀pos ∈ Pos(σ).pos.i, (z = ∆(σ, pos.i)) |=

(¬(select σ
′ ∈ PM (pos).(∀pos′.(pos � pos

′ � pos+ T) ∈

Pos(σ
′
).pos

′
.i, (z = ∆(σ

′
, pos

′
.i)) |= (z ≤ T ∧ ϕ)) ∨ ψ)))

P3
′

: select σ ∈ PM (s).(∀pos ∈ Pos(σ).pos.i, (z = ∆(σ, pos.i) |=

(¬ϕ ∨ (select σ
′ ∈ PM (pos).(∃pos′.(pos � pos

′
<< pos

+ T).pos
′
.i, (z = ∆(σ

′
, pos

′
.i)) |= (z ≤ T ∧ ψ))))))

P4
′

: select σ ∈ PM (s).(∀pos ∈ Pos(σ).pos.i, (z = ∆(σ, pos.i)) |=

(¬ϕ ∨ (select σ
′ ∈ PM (pos).(∃pos′.(pos � pos � pos

′
+ T

∈ Pos(σ′
).pos

′
.i, (z = ∆(σ

′
, pos

′
.i)) |= (θ ∧ z ≤ T) ∧ (∀pos′′

� pos
′ ∈ Pos(σ′

).pos
′′
.i, (z = ∆(σ

′
, pos

′′
.i)) |= (z <

∆(σ
′
, pos

′
.i) ∧ ψ))) ∨ (select σ

′ ∈ PM (pos).(∃pos′.(pos′ � pos)

∈ Pos(σ′
).pos

′
.i, (z = ∆(σ

′
, pos

′
.i)) |= (ψ ∧ z ≤ T)))))))

P5
′

: select σ ∈ PM (s).(∀pos ∈ Pos(σ).pos.i, (z = ∆(σ, pos.i)) |=

(¬(select σ
′ ∈ PM (pos).(∀pos′.(pos′ � pos ∈ Pos(σ′

)).(pos
′
.i,

(z = ∆(σ
′
, pos

′
.i)) |= (z ≤ T ∧ ϕ)))) ∨ (select σ

′ ∈ PM (pos).

(∃pos′.(pos′ � pos) ∈ Pos(σ′
).pos

′
.i, (z = ∆(σ

′
, pos

′
.i)) |=

(z ≤ T ∧ θ))) ∧ (∀pos′′.(pos� pos
′′ � pos

′
) ∈ σ′

.(pos
′′
.i,

(z = ∆(σ
′
, pos

′′
.i)) |= (z ≤ ∆(σ

′
, pos

′
.i)− ∧ψ)))) ∨ (select σ

′

∈ PM (pos).(∀pos′.(pos � pos
′ � pos+ T) ∈ Pos(σ′

).

(pos
′
.i, (z = ∆(σ

′
, pos

′
.i)) |= (z ≤ T ∧ ¬ψ)))))

Finally, we apply rule R3 on P1’, ..., P5’ to abstract ∀pos
and ∃pos into ∀pos.d and ∃pos.d as it is the only compo-
nent of the tuple that counts for the inconsistency checking.
The abstracted patterns can be encoded into SMT-LIB as-
sertions that contain only one quantified component, pos.d
modeled via the real-valued variable “time”. In addition,
the predicates (ϕ, ψ, θ) in the FOL patterns are substituted
with Boolean expressions over the system variables repre-
sented as functions of time denoted as (ϕ time), (ψ time)
and (θ time), respectively. The complete set of patterns
encoded in SMT-LIB is presented in the list below:

P1SMT (forall((time Real))(= (var1 time) val1))

P2SMT (forall((time Real))(=> (and(= (var1 time) val1)

(not(exists ((time1 Real))(and (not (= (var1 time) val1))

(>= time1 time)(<= time1 (+ time T))))))

(= (var2 time) val2)))

P3SMT (forall((time Real))(=> (= (var1 time) val1)(exists

((time1 Real))(and (> time1 time)(< time1 (+ time T))

(= (var2 time1) val2)))))

P4SMT (forall ((timeReal))(=> (= (var1time) val1)

(or (exists ((time1Real))(and (>= time1 time)(<= time1

(+ time T))(= (var2 time1) val2)(not (exists ((time2 Real))

(and (>= time2 time)(<= time2 time1)(= (var2 time2)

val2)(not (= (var3 time) val3)))))))(not(exists ((time1

APPLIED COMPUTING REVIEW DEC. 2017, VOL. 17, NO. 4 21

Real)) (and (>= time1 time)(< time1 (+ time T))

(not (= (var2 time1) val2))))))))

P5SMT (forall ((time Real))(=> (=> (= (var1 time) val1)

(not (exists ((time1 Real))(and (>= time1time)

(< time1(+ time T))(not (= (var1 time1) val1))))))

(or (=> (= (var2 time) val2)(not (exists ((time1 Real))

(and (>= time1time)(< time1(+timeK))(not (= (var2

time1) val2)))))) (exists ((time1 Real))(and (>= time1

time)(< time1 (+ time K))(= (var3 time) val3)(not (exists

((time2 Real))(and (>= time2 time)(< time2 time1)

(not (= ((var2 time2) val2)))))))))))

The original set of requirements expressed via patterns P1,
..., P5 are stronger than their counterparts encoded in SMT-
LIB using the abstraction rules. Consequently, proving the
inconsistency of the encoded versions means proving the in-
consistency of the original ones, however the similar infer-
ence does not hold for the positive case in which the encoded
versions are proven consistent. However, practically, we can
still infer the consistency of the original requirements if their
abstract encoding is satisfiable, based on our argumentation
around the only possible sources of inconsistency.

In the next section, we show how the complete procedure
of formalization of natural language requirements and their
transformation into a format suitable for SMT-based con-
sistency analysis is automated via our PROPAS tool. The
automation is a very important feature of the approach that
makes it accessible for users not skilled in formal methods
who want to check the consistency of their specifications and
contributes to its potential adoption in industrial settings.

5. TOOL SUPPORT: PROPAS
In this section, we present our tool called PROPAS

(PROperty PAtten Specification and analysis), illustrated
in Figure 2, which automates the procedure of transform-
ing the TCTL formulas into an SMT-LIB script suitable for
analysis with a state-of-the-art SMT solvers. The core of the
tool is a library called SMTLibReq, which provides the under-
lying functionalities for transforming the temporal formulas
into SMT-LIB, by automating Steps 2 and 3 (described in
Sections 4.2 and 4.3, respectively) of our methodology. It is
an open source project, with the source code available freely
[13].

5.1 The SMTLibReq Library
The high-level design of the SMTLibReq library is given in
Figure 4. The overall functionality of the library is realized
by two components, depicted as squares: i) a parsing en-
gine, called ExpressionParser, that transforms logical ex-
pressions given as strings into binary tree structures encod-
ing both the semantics and the syntax of each part of the
original expression (the Formula, represented with a circle
in Figure 4); and ii) a transformation engine, called Formu-

laTransformer, that transforms formulas into a formalism
of interest, in this case, an SMT-LIB standard script.

The SMTLibReq library is designed modularly. There are nu-
merous advantages of such design, including reduced com-
plexity, separation of concerns, higher testability and main-

SMT$LIB((
Script

SMTLibReq

ExpressionParser

FormulaTransformer

TCTL((
Specifica@on

Formula

Figure 4: High-level Architecture of the
SMTLibReq Library

tainability. An additional benefit is the fact that it can be
used independently of the PROPAS tool, meaning that it can
be used as an external library in any other project or tool
developed using the C# programing language within the .NET
framework.

5.1.1 ExpressionParser
The main functionality of the ExpressionParser is to parse
logical formulas encoded in TCTL provided as arrays of
characters (strings) into a tree-structure that encodes both
the syntax and the semantics of the input formula. In the
following, the input formula provided as string will be re-
ferred to as expression, whereas the tree structure will be
referred to as formula. Concretely, the produced formula
is of type binary tree, which is suitable for encoding unary
and binary operators. Considering the fact that the primary
focus of our work are system properties expressed in TCTL,
the expressiveness of binary tree suffices. In the binary-
tree structure there are two types of nodes: internal and
leaf nodes. Each internal node represents an operator, be it
unary or binary, whereas the leaf nodes represent the atomic
propositions of the expression.

The parsing of the expressions into formulas is performed in
two steps, called flattening and parsing, respectively. The
flattening procedure represents a preprocessing routine, dur-
ing which complex formulas composed of a number of sub-
formulas are transformed into flat ones. Such flat structures
are then used as an input for the parsing procedure that
generates the binary tree that encodes the original formula.
Both the flattening and parsing procedures are generic and
applicable to most of the formalisms, whereas the operators
and their ordering must be defined for a specific one. Cur-
rently, the ExpressionParser supports the transformation
of TCTL and FOL properties composed of binary operators
only into SMT-LIB assertions. For the next releases, we
plan to extend the library to support more formalisms. In
the following, we illustrate the transformation process of a
logical expression into a formula.

Let us consider the following TCTL formula, encoded as
string: AG(p⇒ AF≤T (q <> r)), which captures the follow-
ing behavior: it is always the case that whenever the propo-
sition p becomes true, then eventually within T time units q

<> r has to become true as well. One should note that in our
work the “<>” operator denotes boolean inequality and not
the future path-specific temporal operator, which is denoted

APPLIED COMPUTING REVIEW DEC. 2017, VOL. 17, NO. 4 22

AG

⇒

p exp1

(a)

AG

⇒

p AF≤T

<>

q r

(b)

Figure 5: Binary-tree representation of a TCTL
formula produced by the ExpressionParser: a) an

intermediate flat formula and b) final formula.

by “F”. During the parsing procedure, the original formula
is analyzed for existence of sub-formulas. In this case, the
expression contains one sub-formula: AF≤T (q <> r). In
order to create a flat expression, the sub-formula is replaced
by a temporary atomic proposition, with the sub-formula
placed in hashtable. After the substitution is applied, we
obtain the following flat formula: AG(p ⇒ exp1) (Figure
5.a). A hashtable entry is created, with exp1 being the key
and the sub-formula being the value. This procedure is re-
cursive and starts from the atomic sub-formulas and is build
upwards. For TCTL, an atomic sub-formula is a TCTL for-
mula that does not contain nested path-specific operators
or quantifiers over paths. The flattened expression is then
passed to the parser engine together with the hashtable that
contains the mappings.

For parsing the TCTL expressions into formulas, the parsing
engine assumes the following order of operators (AG, AF, A,
U, W, =>, ||, &&, !, ==, <>, +, -, *, /), from the weak-
est to the strongest binding. This means that arithmetic
operators have the strongest binding, followed by logical op-
erators, with path-specific temporal operators and the path
quantifiers having the weakest binding.

A flattened TCTL formula has the following properties: it
contains at most one path-specific temporal operator, at
most one path quantifier and one or more logical operators.
In some cases, path-specific temporal operators and the path
quantifiers are considered as one operator in the binary tree
(ex: AG, AF), whereas in the case of U and W operators
they are always treated separately. Once the temporal op-
erators have been identified and parsed, the logical formula
is then transformed according to the predefined ordered list
of logical operators and arithmetic ones. Everything else is
considered to be an atomic proposition.

When the parser encounters an atomic proposition, it looks
in the hashtable to check whether it is an original one, or
it corresponds to a mapping introduced by the flattening
procedure. In the given example, p is an atomic proposition
from the original formula, whereas the proposition exp1 cor-
responds to a mapping. Once the mapping is identified, the
original sub-formula is retrieved from the hash-table and the
procedure continues with the sub-formula being treated as a

new property. The sub-tree that the sub-formula generates
is then simply appended to the original tree by replacing
the mapping leaf node (Figure 5.b). The procedure termi-
nates once all the mappings from the hashtable have been
transformed.

5.1.2 FormulaTransformer
The second component in the SMTLibReq library is the For-

mulaTransformer that parses the binary tree formula into a
format that can be used as a direct input into an SMT solver.
Similar to the ExpressionParser, the FormulaTransformer

component has its basic functionality customizable for par-
ticular formalisms. The customization depends on two fac-
tors: first, the semantics and the syntax of the input formula
(the parsing engine operates on a predefined set of operators
and their semantics), and second, the format of the output,
which can for instance be the general SMT-LIB, a Z3 Python
script, or something else. For the sake of simplicity, in this
section, we describe a transformation procedure of a TCTL
binary-tree formula into SMT-LIB, which is the same as any
other transformation procedure except that it “understands”
the semantics of the TCTL and FOL operators only, thus is
capable of generating an SMT-LIB script that can be used
as an input to state-of-the-art SMT solvers.

The main procedure of transforming the binary-tree formu-
las into an SMT-LIB script involves two main activities: i)
creating assertions that describe the constraints encoded in
the formula, and ii) creating the declarations that define the
variables that are used within the model.

The parsing of the binary-tree formula is performed top-to-
bottom starting from the root node of the tree. The transfor-
mation for both the operators and the atomic propositions
is quite similar. For processing each node, be it internal or
leaf, the procedure analyzes the expression and loads an ap-
propriate template used to instantiate the expression into an
SMT-LIB construct. Each template is composed of literal
and non-literal parts, with the literal parts being fixed, and
the non-literal parts being replaced by the formula-specific
expressions.

Once the template has been loaded, the non-literal parts of
the template are instantiated by the template-instantiation
function. In order to illustrate the parsing procedure, we
recall the same example as previously, i.e. we apply the
transformation on the binary-tree given in Figure 5.b.

The transformation starts from the root node, which in this
case contains the AG operator. The template selection en-
gine analyzes the operator expression and determines that it
should be transformed using the quantifier template, given
as:

(#quantifier# (#quantifiedVariable#) (#expres-

sion#)).

The expressions surrounded by hash symbols represent the
non-literal terms of the template. The loaded template then
represents the basis for the template instantiation function-
ality that determines the non-literal terms and substitutes
them in the template. For the AG expression, the template
instantiation engine determines that the #quantifier# will
be replaced with a universal quantifier over a real-valued

APPLIED COMPUTING REVIEW DEC. 2017, VOL. 17, NO. 4 23

variable that models the notion of time. To be able to de-
termine the formula specific value of the #expression# part,
the parsing calls the parsing procedure for the child nodes
of the current one. All the subsequent operator nodes are
transformed in a similar fashion. The recursive transforma-
tion stops at the leaf nodes. Since the leaf nodes contain the
atomic propositions, when such a node is parsed, a decla-
ration is additionally created for the variables defining that
particular atomic expression. For that purpose, the engine
determines the type of the variable (which in SMT-LIB can
be either a constant or a function) and its inputs and out-
put and creates an appropriate declaration for it. Once the
complete formula structure has been traversed, the assertion
is added to the set of assertions and the set of declarations
produced by the formula is added to the set of declarations
of the script.

After the complete formula from Figure 5.b has been com-
pleted, we obtain the following assertion:

(forall ((time Real)) (implies (= (p time) 1.0)

(exists ((t1 Real)) (and (>= t1 time) (< t1

(+ time T)) (not (= (q t1) (r t1)))))))

accompanied by the following declarations:

(declare-const T Real)

(declare-fun p (Real) Real)

(declare-fun q (Real) Real)

(declare-fun r (Real) Real)

6. CONSISTENCY ANALYSIS OF FLD RE-
QUIREMENTS USING Z3

In this section, we describe the process of consistency analy-
sis of the SMT-LIB assertions generated during the previous
step.

In order to be able to analyze the FLD requirements, we
integrate the SMTLibReq library into the SeSAMM Specifier,
which is possible due to the modular design of the PROPAS

(see Section 5). Then, one can automatically generate an
SMT-LIB script that corresponds to the complete set of re-
quirements for the FLD system. An excerpt of the script
that corresponds to the requirements presented in Section
4.1 is given as follows:

(assert (! (forall (time Real) (=> (= (aPB time)

0.0) (<= (iFV time) (aFV time)))) :named SG))

(assert (! (forall ((time Real)) (=> (and (=

(CAN2 time) (DD time)) (not (= (DD time) ERR)))

(or (exists ((t1 Real)) (and (> t1 time) (<= t1

(+ time 100)) (not (= (CAN2 t1) (DD t1))) (not

(exists ((t2 Real)) (and (> t2 time) (<= t2 t1)

(not (= (iFV t2) (DD t2))))))))(not (exists ((t1

Real)) (and (> t1 time) (<= t1 (+ time 100)) (not

(= (iFV t1) (DD t1))))))))) :named FSRICL))

(assert (! (forall ((time Real)) (=> (= (Dma-

cEnableCh time chU32) 1.0) (= (dmacCH time chID)

1.0))) :named SSR1DMAC))

(assert (! (forall ((time Real)) (=> (= (DmacDis-

ableCh time chU32) 1.0) (= (dmacCH time chID)

0.0)))) :named SSR2DMAC)

By analyzing the assertions generated based on the require-
ments, we notice that the analysis process can be addition-
ally optimized by encoding the domain knowledge not ex-
plicitly captured by the requirements. An example of such
information is the fact that the fuel level cannot be less than
zero or greater than the tank size. Below, we show one such
assertion, actualFuelBound, which bounds the value of the
actualFuelVolume parameter to a range of allowed values
used in the FSR ICL requirement of Section 3.

(assert (! (forall ((time Real)) (and (>= (aFV

time) 0) (<= (aFV time) TANK_SIZE)) :named actual-

FuelBound)))

For performing the SMT analysis, we use an instance of the
Z3 SMT solver configured as follows:

(set-option :mbqi True)

(set-option :mbqi-max-iterations 1000)

(set-option :pull-nested-quantifiers True)

(set-option :unsat-core True)

Four out of five TCTL patterns include implication, so they
can be trivially satisfied if the antecedent evaluates to false.
For example, FSR ICL is trivially satisfied if CAN2(time)

= DD(time) never evaluates to true. To prevent the trivial
satisfaction of the requirements, we explicitly instruct the
solver to check for satisfiability when all of the antecedents
hold. The hidden problem of using this technique may arise
from requirements that model complementary behavior, so
enabling of the antecedents must be performed carefully in
order to avoid false positive inconsistencies.

The SMT-LIB script containing 36 assertions that corre-
spond to the FLD requirements has been analyzed using the
Z3 tool on a Linux machine with 2.4 GHz Dual Core proces-
sor and 4GB RAM. Using the unbounded model-based quan-
tifier instantiation (mbqi) the procedure does not terminate
within 48 hours, whereas bounding the procedure to a maxi-
mum of 1000 runs for generating the model yields the verdict
UNKNOWN. To determine the cause of non-termination of
the SMT analysis, we incrementally insert the requirements
one by one, into the solver, and perform the consistency
analysis on every step. In this way, we are able to isolate
the requirements for which the SMT procedure cannot ter-
minate. By applying this strategy, we discover two classes
of requirements: the ones for which the SMT procedure ter-
minates (solvable) and the ones for which it does not, called
non-solvable. In the following, we discuss the characteris-
tics of both classes and the mitigation strategy used for the
non-solvable ones.

Solvable Requirements. The requirements formalized by
instantiating the patterns P1, P2 and P3, which represent
73% of the total requirements (see Figure 3) do not hinder
termination of the SMT analysis process; an input script
constructed exclusively from such requirements is analyzed
within seconds. This shows that the tool can handle pattern
instances with a maximum of two nested quantifiers without
difficulty. Pattern P1 contains only one universal quantifier

APPLIED COMPUTING REVIEW DEC. 2017, VOL. 17, NO. 4 24

(encoded as ForAll(time) in Z3), while P2 and P3 have two
levels of nested quantifiers of the following types
(forall ((time Real)) (forall ((t1 Real)))) or
(forall ((time Real)) (exists ((t1 Real)))) .
For optimization reasons, the nested universal quantifier is
converted into an existential one by using the conversion
rule: ∀x : p(x)⇐⇒ ¬∃x : ¬p(x).

Non-solvable Requirements. The patterns P4 and P5
covering 27% of total requirements (see Figure 3), prevented
termination of the SMT procedure. Compared to the pat-
terns in the solvable category, P4 and P5 have a more com-
plex structure, arising from the nested TCTL formula of the
W operator, which is translated into two levels of nested
quantifiers. When the W operator is used within an invari-
ant property (e.g. P4 in Section 4.1), an additional universal
quantifier is created, thus yielding three levels of nested op-
erators.

Mitigating Non-solvable Requirements. In order to
tackle the requirements formalized using patterns P4 and
P5, one of the nested quantifiers must be eliminated. By
analyzing the semantics of the patterns, we find that an ad-
ditional existential quantifier is added to model the sporadic
events. These quantifiers can be eliminated by converting
the sporadic events into periodic, that is, by providing a
witness valuation from the set of allowed values. For illus-
tration, we apply this technique on the FSRICL requirement
(see Section 4.1). The original requirement captures the spo-
radic occurrence of the event CAN2 = DD. By applying our
mitigation strategy, we modify the requirement such that the
given event occurs every 100 time units after the antecedent
is satisfied. In the TCTL form, we replace the W≤100 with
U=100, which results in the following formula:

AG(CAN2 = DD ∧DD 6= ERR ⇒ iFV = DD U=100 CAN2 6=
DD).

This model is pessimistic but still valid, since once a witness
is found, the satisfaction of the original formula follows.

After applying the mitigation technique, the SMT analysis
over the complete set of FLD system requirements returns
SAT accompanied by a valid model within. To validate
that our approach can detect temporal inconsistencies, we
perform controlled faulty assertions injection. Examples of
such assertions include: enabling requirements expressing
mutually exclusive behaviors (SSR1

DMAC and SSR2
DMAC)

at the same time, or assertions that violate existing ones.
All of the injected faults have been detected by Z3, and the
conflicting assertions (requirements) contained in the mini-
mal inconsistent set have been generated by the solver using
the unsat-core command.

7. DISCUSSION
In this section, we reflect on the advantages and limitations
of the tool, based on the results obtained after the consis-
tency analysis of the case-study requirements.

In its current state, the SMTLibReq library provides the nec-
essary means for transforming the temporal formulas en-
coded in TCTL into SMT-LIB constraints suitable for con-
sistency analysis using any state-of-the-art SMT solver. De-
spite the fact that the TCTL specifications are generated

using patterns, the implemented transformation procedure
is more general and can be applied on any valid TCTL for-
mula, be it part of the original set of patterns or not. This
feature enables us to expand the set of patterns used for for-
malizing the requirements, while not jeopardizing the cor-
rectness of the final result. However, one should note that
the current version was tested over the patterns from the
FLD specification only, so evaluation with other patterns or
arbitrary TCTL formulas may lead to situations that the
tool cannot handle.

For determining the type of the variables and the return
type of the functions in the system specification, SMTLibReq
implements a simple type-inferring mechanism, which as-
signs type Real to the functions and variables in the system
specification. Despite the fact that such an approach repre-
sents an over approximation (the boolean and integer values
are subsets of the real-valued variables) it is less efficient.
For example, if there is a boolean variable in the system
and it is declared as real-valued one, the SMT solver in the
background must call the arithmetics engine to solve this
constraint, whereas in reality it could have been done on a
propositional level. We are already working on improving
the type-inferring mechanism and the improved version is
expected to be released in the subsequent updates of the
library.

Last but not least, for the formal specification of free-text
requirements (Step 1), we relied on our existing tool, called
SeSAMM Specifier. For confidentiality reasons, the SeSAMM

Specifier cannot be shared with the community for further
evaluation and usage. To circumvent this limitation, as a di-
rection for future work we aim at developing a PROPAS user
interface that can be distributed freely as an open source
project. As for now, it seems that a tool, which would be
a simplified version of the existing SeSAMM Specifier with-
out the privacy-protected features, is the way to go. With
the introduction of this feature, the PROPAS tool will become
more accessible to a broader audience, but it will also open
a door of possibilities for integrating other features that will
make it evolve into a more comprehensive framework for
specification, analysis and verification of industrial embed-
ded systems.

8. RELATED WORK
Various approaches for checking requirements consistency,
based on different definitions of consistency and different
analysis techniques, have been proposed in the literature.

A consistency checking procedure similar to ours has been
proposed by Barnat et al. [3]. The authors define a model-
free sanity-checking procedure including consistency for sys-
tem requirements specifications in Linear Temporal Logic
(LTL) by means of model checking. The notion of consis-
tency is reduced to checking whether an automaton obtained
as a conjunction of all the formulas in the specification has a
non-empty accepting language. The same has later been ex-
tended [2] to be able to generate a minimal inconsistent set
of requirements. The approach relies on tool support similar
to our PROPAS, which uses specification patterns for formal
system specification and a parallel LTL model-checker called
DiVinE [4]. Despite the exhaustiveness, the approach suffers

APPLIED COMPUTING REVIEW DEC. 2017, VOL. 17, NO. 4 25

from the inherent complexity of transforming the LTL for-
mulas into automata, especially for large systems, thus po-
tentially making its application in industrial contexts chal-
lenging. A similar approach for consistency checking of re-
quirements specified in LTL is proposed by Ellen et al. [12].
The paper presents a so-called existential definition, that is,
the existence of at least one run of the system that satis-
fies the complete set of requirements - which is an approach
close to ours. For performing the consistency checking, the
authors use bounded model checking using the iSAT SMT
solver [11]. The proposed technique is capable of generat-
ing a maximal set of consistent requirements, as well as a
minimal inconsistent subset of requirements. Similar to our
approach, the tool has been integrated into the existing tool
called BTC Embedded Specifier [6], which is a proprietary
software that relies on their tool-specific specification pat-
terns.

The work by Post et al. [24] defines the notion of rt-
(in)consistency of real-time requirements. The notion cov-
ers cases where the requirements in the system’s require-
ments specification can be inconsistent due to timing con-
straints. The checking for rt-inconsistency is reduced to
model checking. Compared to our approach, the generation
of the formalism that is subjected for consistency analysis is
performed manually.

The notion of consistency is also checked for requirements
specified in domain-specific notations. Heimdhal and Leve-
son [18] provide an approach for consistency analysis for
requirements specified in RSML (Requirements State Ma-
chine Language). The proposed definition for consistency
is suitable only for requirements specified in RSML and is
not applicable for requirements expressed in any other no-
tation. Real-time embedded systems can also be specified
using the Software Cost Reduction (SCR) method. The SCR
method is suitable for specifying both functional and extra-
functional system requirements. A complete suite for ana-
lyzing system specifications in SCR has been developed by
Heitmeyer et al. [19]. The suite provides tools for require-
ments specification, symbolic execution and formal analysis.

Despite the fact that the approaches above [2] [3] [24] can
exhaustively check for the consistency of requirements speci-
fications, all of them suffer from one major limitation, which
is the verification time that grows exponentially with the
number of requirements. In the early phases of system re-
quirements specification, a more lightweight and consider-
ably faster procedure as proposed in this paper might be
more suited. Hence, our method can be used as a comple-
mentary approach to the above listed methods for consis-
tency checking. Another important aspect of our approach
is the fact that the complete procedure is completely auto-
mated and the formal system specification is performed in a
user-friendly manner using the specification patterns.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an automated solution
for SMT-based consistency analysis of formal requirements
specifications encoded as Timed CTL formulas. The pro-
posed solution is supported by our tool called PROPAS, which
completely automates the requirements transformation and

consistency analysis procedures.

The implementation of the PROPAS tool provides a “push-
button-analysis” approach, meaning that the complete pro-
cess of transformation and ultimately the analysis of the re-
quirements is completely hidden from the users. The genera-
tion of the analyzable format is performed according to well-
justified abstraction rules that simplify the original formulas
to ensure their analyzability while assuring the preservation
of information that could contribute to potential inconsis-
tencies. Our initial validation of the tool on an industrial
case, the Fuel Level Display from Scania, shows its poten-
tial for consistency checking of running industrial systems.
However, the full potential of the tool needs to be tested on
more complex and larger system specifications.

Given the current status of the underlying SMT-based con-
sistency analysis methodology and its automation though
the PROPAS tool, there are several directions for future re-
search. The SMT-based methodology can be improved in
several ways, including: proposing a more general definition
of consistency, improving the encoding in order to speed
up the analysis procedure, which could possibly lead to the
tool being able to analyze other classes of formal proper-
ties also. Moreover, we have to address the missing features
and the limitation of the current version of the PROPAS tool,
discussed in Section 7. The fact that the transformation
process is completely automated opens up the possibility to
validate the tool at a more extensive scale, on larger indus-
trial systems. To meet such a goal, we have already started
preparing future case studies, based on running industrial
examples to further investigate the boundaries of applica-
bility of our tool and method.

Acknowledgments
This work has been funded by the Swedish Governmen-
tal Agency for Innovation Systems (VINNOVA) under the
VeriSpec project 2013-01299.

10. REFERENCES
[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking

in dense real-time. Information and Computation,
pages 2–34, 1993.

[2] J. Barnat, P. Bauch, N. Beneš, L. Brim, J. Beran, and
T. Kratochv́ıla. Analyzing Sanity of Requirements for
Avionics Systems. Form. Asp. Comput., 28(1):45–63,
Mar. 2016.

[3] J. Barnat, P. Bauch, and L. Brim. Checking Sanity of
Software Requirements. In Proceedings of the 10th
International Conference on Software Engineering and
Formal Methods, SEFM’12, pages 48–62, Berlin,
Heidelberg, 2012. Springer-Verlag.

[4] J. Barnat, L. Brim, M. Ceska, and P. Rockai. Divine:
Parallel distributed model checker. In Parallel and
Distributed Methods in Verification, 2010 Ninth
International Workshop on, and High Performance
Computational Systems Biology, Second International
Workshop on, pages 4–7. IEEE, 2010.

[5] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB
Standard: Version 2.5. Technical report, Department

APPLIED COMPUTING REVIEW DEC. 2017, VOL. 17, NO. 4 26

of Computer Science, The University of Iowa, 2015.
Available at www.SMT-LIB.org.

[6] BTC Embedded Systems AG. BTC Embedded
Validator Pattern Library, Release 3.6, 2012.

[7] L. De Moura and N. Bjørner. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, pages 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

[8] L. De Moura and N. Bjørner. Satisfiability Modulo
Theories: Introduction and Applications. Commun.
ACM, 54(9):69–77, Sept. 2011.

[9] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Property Specification Patterns for Finite-state
Verification. In Proceedings of the Second Workshop
on Formal Methods in Software Practice, FMSP ’98,
pages 7–15, New York, NY, USA, 1998. ACM.

[10] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Patterns in Property Specifications for Finite-state
Verification. In Proceedings of the 21st International
Conference on Software Engineering, ICSE ’99, pages
411–420, New York, NY, USA, 1999. ACM.

[11] A. Eggers, N. Kalinnik, S. Kupferschmid, and
T. Teige. Challenges in constraint-based analysis of
hybrid systems. CSCLP, 5655:51–65, 2008.

[12] C. Ellen, S. Sieverding, and H. Hungar. Detecting
Consistencies and Inconsistencies of Pattern-Based
Functional Requirements, pages 155–169. Springer
International Publishing, Cham, 2014.

[13] P. Filipovikj. PROPAS.
https://github.com/predragf/propas, 2017.

[14] P. Filipovikj, T. Jagerfield, M. Nyberg,
G. Rodŕıguez-Navas, and C. Seceleanu. Integrating
Pattern-Based Formal Requirements Specification in
an Industrial Tool-Chain. In 40th IEEE Annual
Computer Software and Applications Conference,
COMPSAC Workshops 2016, Atlanta, GA, USA,
June 10-14, 2016, pages 167–173. IEEE Computer
Society, 2016.

[15] P. Filipovikj, M. Nyberg, and G. Rodriguez-Navas.
Reassessing the pattern-based approach for
formalizing requirements in the automotive domain. In
Proceedings of the 22nd IEEE International
Requirements Engineering Conference (RE),
volume 00, pages 444–450, Los Alamitos, CA, USA,
2014. IEEE Computer Society.

[16] P. Filipovikj, G. Rodriguez-Navas, M. Nyberg, and
C. Seceleanu. SMT-based Consistency Analysis of
Industrial Systems Requirements. In The proceedings
of the 32nd ACM Symposium on Applied Computing
(SAC). Marrakech, Morocco. ACM, April 2017.

[17] L. Grunske. Specification Patterns for Probabilistic
Quality Properties. In Proceedings of the 30th
International Conference on Software Engineering,
ICSE ’08, pages 31–40, New York, NY, USA, 2008.
ACM.

[18] M. P. E. Heimdahl and N. G. Leveson. Completeness
and Consistency in Hierarchical State-Based
Requirements. IEEE Trans. Softw. Eng.,
22(6):363–377, June 1996.

[19] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw.
Automated Consistency Checking of Requirements
Specifications. ACM Transactions Software
Engineering Methodology, 5(3):231–261, July 1996.

[20] J.-P. Katoen. Concepts, Algorithms and Tools for
Model Checking. 1999.

[21] S. Konrad and B. H. C. Cheng. Real-time Specification
Patterns. In Proceedings of the 27th International
Conference on Software Engineering, ICSE ’05, pages
372–381, New York, NY, USA, 2005. ACM.

[22] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a
nutshell. Int. Journal on Software Tools for
Technology Transfer, 1:134–152, 1997.

[23] C. M. Papadimitriou. Computational complexity.
Addison-Wesley, Reading, Massachusetts, 1994.

[24] A. Post, J. Hoenicke, and A. Podelski.
Rt-inconsistency: A New Property for Real-time
Requirements. In Proceedings of the 14th International
Conference on Fundamental Approaches to Software
Engineering: Part of the Joint European Conferences
on Theory and Practice of Software,
FASE’11/ETAPS’11, pages 34–49, Berlin, Heidelberg,
2011. Springer-Verlag.

[25] A. Post, I. Menzel, J. Hoenicke, and A. Podelski.
Automotive Behavioral Requirements Expressed in a
Specification Pattern System: A Case Study at
BOSCH. Requir. Eng., pages 19–33, 2012.

[26] J. Westman and M. Nyberg. Contracts for Specifying
and Structuring Requirements on Cyber-Physical
Systems. In D. B. Rawat, J. Rodriques, and
I. Stojmenovic, editors, Cyber Physical Systems: From
Theory to Practice. CRC Press, 2015.

APPLIED COMPUTING REVIEW DEC. 2017, VOL. 17, NO. 4 27

ABOUT THE AUTHORS:

Predrag Filipovikj is a PhD student at Mälardalen University, Sweden since January
2014. He holds MSc degrees in Software Engineering from Mälardalen University,
Sweden, and Computer Networks and e-Technologies from Ss. Cyril and Methodius
University, Macedonia, respectively, and a Licentiate degree in Technology from
Mälardalen University, Sweden. His research is focused on the application of formal
methods for increasing the quality of cyber-physical systems, with particular focus
on the automotive domain. His active topics of research include: engineer-friendly
formal system specification and analysis, and formal verification of design-time
models mostly by model checking. He performs research in cooperation with Scania
AB CV and Volvo Groups Truck Technology, both from Sweden. He is a student
member of ACM and IEEE, and a member of the Swedish Requirements
Engineering Research Network.

Guillermo Rodriguez-Navas received the telecommunication engineer degree from
the University of Vigo, Spain, in 2001, and the doctorate in informatics from the
University of the Balearic Islands (UIB), Spain, in 2010. At present, he is senior
lecturer at the School of Innovation, Design and Engineering of the Mälardalen
University, Sweden. He has authored or co-authored +60 peer-reviewed scientific
papers and is currently co-supervising three doctoral dissertations. His research
interests include dependability and safety aspects of complex embedded systems,
fault tolerance for distributed embedded systems, clock synchronization, scheduling
algorithms for real-time time-triggered networks, and application of formal
verification techniques to requirements engineering and system specification,
particularly in the domains of automotive and cyber-physical systems.

Mattias Nyberg is an adjunct (part-time) professor at Royal Institute of Technology
(KTH) in the department of Mechatronics. His main affiliation is Scania CV AB, a
leading global heavy-truck manufacturer. He received a PhD in Electrical
Engineering from Linköping University in 1999 specializing in vehicular systems.
After dissertation he has worked mainly in industry; first for Daimler in Stuttgart,
Germany, with diesel engine diagnosis, and later at Scania with diagnosis and
functional safety. In parallel with his industrial career, he is very active in academic
research. He has supervised six PhD students in the area of diagnosis and functional
safety. He is also an author of more than 100 scientific publications, and has
received the SAE Vincent Bendix award for the best paper of year 2015 in the area
of automotive electronics engineering.

Docent Cristina Seceleanu is Associate Professor at Mälardalen University, Sweden,
Embedded Systems Division, and leader of the Formal Modeling and Analysis of
Embedded Systems research group. She has a MSc. in Electronics (Polytechnic
University of Bucharest, Romania) and a Ph.D. in Computer Science (Åbo Akademi,
Finland). Her research focuses on developing formal models and verification
techniques for predictable real-time and adaptive embedded systems. She has been
involved in several national and European research projects (FP7, ARTEMISIA,
AAL), out of which she is currently leading three. She has served in the editorial
boards of several journals such as Frontiers in ICT: Formal Methods, and
International Journal of Embedded and Real-Time Communication Systems
(IJERTCS), as well as in the PC of about 100 conferences in the field.

APPLIED COMPUTING REVIEW DEC. 2017, VOL. 17, NO. 4 28

