
Integrating Pattern-based Formal Requirements Specification in an Industrial
Tool-chain

Predrag Filipovikj∗, Trevor Jagerfield∗, Mattias Nyberg†, Guillermo Rodriguez-Navas∗, Cristina Seceleanu∗
∗Mälardalen University, Västerås, Sweden

{predrag.filipovikj, guillermo.rodriguez-navas, cristina.seceleanu}@mdh.se, trevor.jagerfield@gmail.com
†Scania, Södertälje, Sweden, mattias.nyberg@scania.com

Abstract—The lack of formal system specifications is a major
obstacle to the widespread adoption of formal verification tech-
niques in industrial settings. Specification patterns represent a
promising approach that can fill this gap by enabling non-
expert practitioners to write formal specifications based on
reusing solutions to commonly occurring problems. Despite the
fact that the specification patterns have been proven suitable
for specification of industrial systems, there is no engineer-
friendly tool support adequate for industrial adoption. In
this paper, we present a tool called SESAMM Specifier in
which we integrate a subset of the specification patterns for
formal requirements specification, called SPS, into an existing
industrial tool-chain. The tool provides the necessary means
for the formal specification of system requirements and the
later validation of the formally expressed behavior.

I. INTRODUCTION

The potential benefits of using formal techniques for
specification and verification of systems, especially in what
concerns product quality and reduction of verification effort,
have been reported in several studies [1]. Formal specifica-
tion/verification is strongly recommended by some safety
standards, particularly for high-integrity safety levels [2].

Nowadays, the lack of formal requirement specifications
constitutes a major obstacle to the widespread adoption of
formal verification. In most industrial settings, engineers use
only informal documents, written in natural language or
including graphs with no well-defined semantics, until very
late in the development process. The use of formal notation
is typically not well understood by engineers, hence rarely
employed by current practices.

Pattern-based approaches have been proposed in order to
facilitate the task of formalizing requirement specifications
and make it amenable to the average engineer. The approach
is based on the fact that requirements specifications are
written in reoccurring solutions (or patterns) that can be
expressed in structured English language with automatic
translation into corresponding formal counterparts. The pat-
terns have been standardized and organized into catalog for
enabling the knowledge transfer among the practitioners,
thus enabling future reuse. Some first experiences show that
this approach has potential for industrial application, but
choosing the appropriate pattern for each requirement is still
challenging and error-prone due to the lack of familiarity
with formal logics [3] [4].

Tools originating from academia have focused on the
formal aspects of the pattern-based methods and have paid
little attention to issues that are vital to industry, such as:

ease of use, extensiveness of the pattern catalog and possi-
bility for integration within existing industrial tool-chains.
In this paper we try to fill this gap, by showing how tool
support for pattern-based formalization of requirements can
be integrated with an actual tool-chain for designing vehic-
ular control systems. The resulting tool is called SESAMM
Specifier, which we have designed and developed according
to the engineers’ needs from the heavy-truck industry.

The rest of the paper is organized as follows. In Section II,
we present an overview of the specification patterns and
visual notations for formalized requirements, which we
implement in this work. In Section III, we describe the
existing industrial tool-chain that we integrate the SESAMM
Specifier with. The description of SESAMM Specifier and
the implementation details are given in Section IV. Section V
compares to related work, whereas in Section VI we discuss
the approach, before concluding the paper in Section VII.

II. BACKGROUND

In this section we present the preliminary concepts used
in the paper. Section II-A overviews the pattern-based ap-
proach for formal system specification, whereas Section II-B
overviews the graphical notations used for visualizing the
behavior of the pattern-based system specification.

A. Specification Patterns

The specification pattern system (SPS) [5] is a catalog
of specification patterns used for specifying concurrent
and reactive systems. A specification pattern represents a
generalized description of a commonly occurring solution
when specifying requirements. It captures some aspect of the
system’s behavior and provides mechanisms to express this
behavior in different formalisms. A pattern is characterized
by name, intent, and scope, where the intent represents
the structure of the described behavior and scope denotes
the extent of program execution to which the pattern must
hold. The intent of a pattern can be expressed in various
specification formalisms, which can be event-based (ex:
quantified regular expressions (QRE) [6]) or state-based
(ex: linear temporal logic (LTL) [7], computation tree logic
(CTL) [8]). The five basic pattern scopes [5] are: globally
(the entire program execution), before (before the first oc-
currence of a given state/event), after (after the occurrence
of given state/event), between (any part of program execu-
tion between two states/events), and after-until (similar to



P Q

P* Q

a)

b)

Globally, it is always the case that if P holds, then Q eventually holds.

AG(P → AF (Q))

c) P Qalways eventually

Fig. 1. Response pattern encoded in graphical notations. a) RTGIL b)
UCMPPS c) LR

between except that the occurrence of the second event is
not mandatory).

To facilitate easier browsing, the patterns in the SPS
catalog are organized into hierarchies according to their se-
mantics, such that the similar patterns are connected to each
other. On the top level, the catalog is composed of two main
categories: Occurrence and Order. The Occurrence category
contains the Absence, Universality, Existence and Bound
Existence patterns that capture the occurrence/absence of
a given state/event. The patterns in Order category includ-
ing: Precedence, Response, Chain Precedence and Chain
Response describe the relative order in which multiple
events/states occur.

Subsequently, Konrad and Cheng [9] extended the original
SPS catalog by including a new class of specification pat-
terns for real-time system properties. The formal encoding
of real-time patterns is given in metric temporal logic
(MTL) [10], timed CTL (TCTL) [11] and real-time graphical
interval logic (RTGIL) [12]. To facilitate the adoption of
specification patterns by non-expert practitioners, Konrad
and Cheng proposed a pattern representation in structured
English. Such representation enables practitioners to under-
stand the meaning of a property without knowledge of its
temporal logic representation.

B. Methods for Visual Representation of Semantics of SPS
patterns

This section presents an overview of three different ap-
proaches that provide support for the graphical representa-
tion of behavior captured in formal notation, which we im-
plement in our tool. Each of the notations will be discussed
via a simple scenario of a Response pattern with global
scope, corresponding to the CTL formula AG(P → AF Q)
[5], which reads: “Globally, it is always the case that if P
holds, then Q eventually holds”.

a) Real-time GIL (RTGIL) [13] is an extension of graphics
interval logic (GIL) that provides support for specification of
real-time properties. Fig. 1a shows the RTGIL representation
of the Response pattern. Formulas in RTGIL are read from

top to bottom and from left to right, starting from the
topmost interval. The progression of the computation in
RTGIL is represented as a time-line (top line in Fig. 1a).
An interval represents a segment of the time-line closed to
the left and open to right. Each interval in RTGIL starts
and ends with a search pattern, which is a sequence of
states that starts from the beginning of the context or at the
state located by the previous search pattern. The example
contains two search patterns, one for each of the boolean
terms involved (P , Q). The first search interval for P starts
at the beginning of the context and it is represented by a
dotted line, denoting that the search interval can be empty,
that is, P can also be missing in the context. The search
interval terminates when the designated term evaluates to
true. The second search interval starts at the end of the
previous interval and is valid until the end of the time-line.
The interval has been decorated with a diamond symbol,
meaning that Q will eventually become true in the interval.
The representation of formalized behavior using intervals
can be useful to capture the temporal ordering of events,
which is not easy to comprehend by reading the logical
formula only.

b) Hassine [14] proposes a system called Use Case Map
Property Pattern System (UCMPPS) that provides graphi-
cal representation for all the specification patterns of the
quantitative [5] and real-time [9] categories based on the
Use Case Map (UCM) notation. UCM is a high-level design
language that enables reasoning about the systems’ behav-
ioral patterns. Fig. 1b depicts the UCMPPS representation
of the Response pattern with global scope. The complete
system execution is represented with a horizontal line called
scenario path, in which the time progresses from left to
right. The beginning of the scenario is denoted with a
filled circle, and the end with a vertical bar. The scenario
contains responsibilities that represent abstract activities that
can be refined in terms of functions, events, etc. The pattern
in Fig. 1b has two responsibilities denoted by “x”, which
correspond to events P and Q. The star in the name of
event P denotes that its occurrence is optional. The arrow
between the two events is added to distinguish the general
response property from the restricted response (Q follows
P immediately, which is denoted without an arrow on the
scenario line). Other elements in the UCM notation that are
not used in the given example include: components, forks,
joins, stubs and timers.

c) LR [15] is a specification language based on graphical
notation intended to facilitate the formal specification of
system properties described in temporal logic. The language
is intended to be flexible, thus has no fixed list of constructs.
The intended use of the language is through a two-level
approach, namely expert and user level. On the expert level,
a set of patterns is defined, which is later used to specify
system properties on the user level represented as directed
acyclic graphs. Nodes in the graph represent predicates,
logical connectives, modal operators and quantified temporal



operators. Each of the nodes has an associated graphical
construct that denotes its semantics. Fig. 1c contains the LR

graph corresponding to the Response pattern. The graph is
composed of nodes, and the directed arrows show the order
of execution. The first node in the graph is the universal
path quantifier (“∀”) followed by a keyword “always” de-
noting the global temporal operator. Next, there comes the
event/state P that for all paths will “eventually” (that is, in
finite time) be followed by event/state Q.

The approaches a) and b) use time progression to de-
pict the time-line of the system execution. The events are
presented on a time-line that clearly captures their tempo-
ral ordering. The approach described as c), on the other
hand, represents the constructs of a logical formula, that
is, propositions, temporal operators and branch quantifiers,
as graphical elements that can be easily understood and
manipulated by engineers who are used to notations such
as UML.

III. DESCRIPTION OF THE EXISTING INDUSTRIAL
TOOL-CHAIN

In this section we describe the industrial tool-chain,
called SESAMM, which represents a collection of tools for
visualizing architectural models, requirements specification
and failure propagation modeling. The SESAMM tool-chain
comprises research prototype tools, intended to continuously
evolve until reaching production quality.

SESAMM has been originally developed as a tool-chain
for the extraction of architectural models from implemen-
tation, that is, the deployed source code. The initial imple-
mentation, as described in previous work [16], has four main
parts: (i) a back-end C-code parser and parser coordinator,
(ii) a graph database, and two front-end applications: (iii)
Architecture Browser and (iv) CAN Verifier. The goal is to
build tools for architecture recovery intended for mitigating
the problem of architectural drift that occurs when the
system implementation and the documentation evolve in
inconsistent ways.

The basic functionality of the code parser and the respec-
tive coordinator is to retrieve the architectural information
based on the source code. For extracting the architectural
information, the parser parses the source files from the
application layer software and CAN communication layer,
and stores that information into a graph database. The Ar-
chitecture Browser front-end tool is used for the interactive
visualization of the extracted software architecture as such.
The tool provides an improved overall understanding of
the system’s architecture, based on two views, namely: the
network diagram that represents the computational elements
and main networks of the heavy-truck’s design, and the
software/hardware diagram, which shows the architectural
break-down of the software and hardware architectures of
the computational elements. The second front-end tool,
called CAN Verifier, is used for verifying the content of
the CAN communication layer, by comparing the parsed
data with the data in other external databases. The aim

Expert UI Engineer UI

Domain Ontology

Pattern Catalogue

Requirements Specification

Fig. 2. SESAMM Specifier Architecture

is to find potential inconsistencies between the design and
implementation, which as reported by the authors has been
fulfilled. In subsequent research endeavors, the SESAMM
tool-chain has been extended with a tool for failure propa-
gation modeling [17]. The idea of the approach is to exploit
the requirements specification structured using contracts
theory for creating models of failure propagation. The tool
provides interface features for: i) requirements specification
in natural language and basic traceability options based
on the assumption-guarantee contracts theory [18], and ii)
specification of failure modes and generation of logical
relations of faults/failures linked to the assumptions of each
requirement specified as a guarantee.

IV. SESAMM SPECIFIER

In this section, we describe our main contribution, the
SESAMM Specifier tool, which supports (industrial) prac-
titioners not experts in formal notations, in the process of
formal requirements specification. The requirements specifi-
cation tool has been integrated into the SESAMM tool-chain
introduced in Section III.

The SESAMM Specifier has been designed to satisfy
demands such as flexibility and extensiveness. Flexibility is
reflected by the fact that the tool can be integrated into
existing tool-chains used in industrial settings instead of
being developed as standalone tool. On the other hand,
extensiveness means that the tool has been developed around
the pattern-based approach for requirements specification
without being bound to a specific pattern catalog, thus it
can be extended and adapted further. This feature facilitates
the tool’s customization to satisfy the needs of different
stakeholders. To obtain a consistent integration with the rest
of the tools within the tool-chain, the SESAMM Specifier
has been implemented as a desktop application using .NET
framework v4.5, with the back-end code written in C#
and interface implemented using the Windows Presentation
Foundation (WPF). In the remainder of the section, we
present the tool by two important aspects: its architecture
and functionality. The functionality of the tool is described
via a workflow diagram, and user interfaces (UIs), where
each step of the workflow is mirrored by the part of the
respective UI that realizes it.



Add/Modify Add Basic Define

Save

Expert

Engineer

Add/Modify Add Basic Specify View and

TraceabilityRequirement Information Propositions Requirements
Add

SESAMM Specifier

3

Pattern Information Notation

Validate

21

521 3 4

Fig. 3. Expert and Engineer work-flows of SESAMM Specifier

The architecture of the SESAMM Specifier (Fig. 2) con-
sists of three data sources for storing data and two UIs for
managing it. The arrows between the architectural elements
indicate the data flow within the tool. An arrow from a
data source to an UI denotes read-only data access, while
a two way arrow indicates that a given UI can both read
from, and write data to that particular data source. The
Domain Ontology stores information about various concepts
(function and signal names, software variables, etc.) from
the system architectural design, managed by the C-code
parser from the SESAMM tool chain (see Section III). This
data source is accessible only by the engineers through the
Engineer UI. The Pattern Catalog data source contains all
the patterns that can be used for requirements specification,
managed by a formal methods expert through the designated
Expert UI. The catalog stores information relevant to each
specification pattern, including the pattern’s name and differ-
ent notations used for representing the pattern. The specified
requirements using our SESAMM Specifier tool are stored
in Requirements Specification.

The intended workflows for both experts and engineers are
given in Fig. 3. In the following, we present both workflows
and the respective UIs by which they are realized.

A. Expert Workflow and UI

All the features of the tool intended for the experts
revolve around creating, modifying and deleting patterns
in the pattern catalog. The Expert UI through which these
functionalities can be exercised is given in Fig. 4.

The Expert UI has been divided into three sections, each
corresponding to an action in the workflow denoted by
the same number. The first step in the expert workflow
is the initialization of the process for adding, modifying
or removing a pattern from the catalog. This action is
realized by “Section 1” of the Expert UI. It contains a
list of all available patterns in the catalog. The actions for
adding, modifying and removing patterns are given in a
context menu that can be opened by a right-click on the
list of patterns. Due to space limitation, in the following we
describe only the scenario for creating a new pattern. The
modification of an existing pattern contains the same steps,
whereas removing a pattern is done in a single step.

1

2

3

Fig. 4. SESAMM Specifier: Expert User Interface

After selecting the option of adding a new pattern, during
the second step of the workflow the expert enters the basic
data for the pattern, which includes its name and description.
To enter this data into the system, the expert uses “Section 2”
of the Expert UI as presented in Fig. 4. The last expert action
in the workflow is to define the different notations (also
called views) in which the given pattern can be encoded. In
“Section 3” of the Expert UI one can see that for the given
pattern the expert has defined its representation in natural
language (NL), LTL, and CTL. Additionally, the expert has
selected the NL to be the default view of the pattern.

B. Engineer Workflow and UI

The requirements specification workflow intended for the
engineers’ use is realized by the Engineer UI given in Fig. 5.
Again, each of the actions in the workflow has a designated
part in the Engineer UI through which it is realized. To
illustrate the features of the engineers’ workflow, we chose
to formalize one requirement of an operational industrial
system, as follows: “If the parking brake is not applied,
then the fuel volume shown by the gauge shall be less or
equal than the fuel volume in the tank, within 10 ms”.
The behavior of the requirement can be captured via the
Bounded Response pattern, valid during the entire program
execution, that is, bearing a Global scope.

After launching the Engineer UI, during the first step of
the workflow the engineer is required to enter the basic
information for the requirement, by using the “Section 1”
of the UI given in Fig. 5. The basic data includes the



1

2

3

4

5

Fig. 5. SESAMM Specifier: Engineer User Interface

requirement ID, an automotive safety integrity level (ASIL)
[2], as well as the intent and scope of the requirement. In
cases when the user is not sure which intent and scope
capture the semantics of the requirements most accurately,
the tool provides a multi-step process that leads the users to
determining patterning information through a series of steps.
For this purpose we have implemented a custom version
of a Question Tree [19] mechanism, which uses a set of
predefined questions meant to guide the engineers towards
a more accurate selection.

In the second step of the workflow, the engineer specifies
the terms describing the states/events over which the
behavior of the pattern is defined. There are two classes
of terms that should be specified: the first contains the
states/events defining the behavior of the pattern, whereas
to the second class belong those that define the scope.
The data concerning the terms is entered via “Section 2”
of the Engineer UI. Since the number of states/events for
different combinations of intent and scope is not constant,
the interface is automatically adjusted to represent the
information relevant to the currently selected intent and
scope. For the given example, there are two terms describing
the behavior and no term for the scope since the Global
option is used. The representation of the requirement in
TCTL is given as: AG(#parkingBrakeApplied =
False → AF≤10(#indicatedFuelV olume ≤
#actualFuelV olume)). The phrases starting with

(“#”) denote concepts from the domain ontology. The
#parkingBrakeApplied represents a domain concept that
models the status of the parking brake of the vehicle using
a Boolean variable. Similarly, #indicatedFuelV olume
models the fuel volume displayed to the driver, while
the #actualFuelV olume models the fuel that is in the
fuel tank of the vehicle. The input of domain concepts
is supported by auto-complete functionality built into the
tool, hence preventing typing errors and supporting the
engineers in typing complex domain concepts. Encoding
concepts from the domain ontology into the requirements
specification is important from two points of view. First,
it assures the traceability between the requirements and
the architectural elements to which given requirements
have been assigned; by encoding concepts from the
domain ontology, the tool establishes such traceability,
automatically. This traceability information is exploited
by the SESAMM tool-chain to help the designers trace
the requirements down to architectural artifacts, at various
design levels, and ultimately to the code itself. Second, the
meta information for each concept, such as type (enum,
integer, string, etc.), range of values etc., is used by the tool
to perform an automatic on-the-fly validation of the specified
requirement. For instance, based on the meta information,
the run-time validation engine prevents assigning or
comparing the concept #parkingBrakeApplied of type
Boolean to values other than “True” or “False”.

In the steps 3 and 4 of the workflow, the engineer performs
the validation of the specified requirement by browsing
through the different available notations. In “Section 3” of
the Engineer UI one can notice that the requirement is repre-
sented in notations that include: controlled natural language,
MTL and TCTL. These representations are dynamically
created by the tool based on the information provided in
“Sections 1 and 2”. If the information in ”Sections 1 and
2” is additionally updated, the information in “Section 3” is
automatically updated also, to ensure consistency between
the user input and the presentation. One can visualize the
given requirement in different graphical notations in “Sec-
tion 4”. Currently, the tool supports visualizing requirements
in RTGIL, UCMPPS or LR, and the navigation between
the visual notations is provided by using the drop-down
list. In the example, we have selected RTGIL to visualize
the behavior of the example requirement (see Fig. 5). The
diagram reads as follows: within the complete program
execution (denoted by a square on the main time-line),
the occurrence of event/state P leads to the occurrence of
event/state S, within the right-closed interval given as (0,
c]. The constant “c” is used to keep the reusability of the
RTGIL diagrams, with its actual value specified in “Section
2” as a “Time Bound” property.

The last step in the workflow requires entering the trace-
ability information between requirements, using the trace-
ability matrix of “Section 5” of the Engineer UI. The tool
provides two types of traceability links, namely decomposes



and assumes, as proposed by the assume-guarantee contract-
based system requirements specification approach [18]. For
the example given in Fig. 5, the fulfillment of the newly cre-
ated “SafetyGoal” requirement depends on the fulfillment of
the “DriverFunctionalSafetyRerquirement” by the particular
system. Based on this traceability links, the decomposition
of the system’s requirements specification can be visualized
in form of decomposition graphs.

V. RELATED WORK

A number of research endeavors have shown the fact
that the adoption of any pattern-based approach depends
on an adequate tool support. In the following, we present
an overview of five academic tools for formal requirements
specification that rely on the pattern-based approach that we
have considered.

The ”PROPerty ELucidation” system (PROPEL) [19] and
Property Specification (Prospect) [20] are among the first
tools for formal specification of system properties based
on specification patterns. The tools provide interfaces for
requirements specification using disciplined natural language
and finite-state automata (FSA). Subsequently, PROPEL has
been extended to encompass guidance mechanisms for the
users during the process of selecting the correct template
[21], in form of Behavior Question Tree techniques. Both of
the tools use only state-base notations to formally represent
requirements behavior. Due to the limitations of the state-
based formalisms, a second version of the Prospect tool
has been designed to include the future interval logic (FIL)
notation as a complementary notation for the specification
of intervals. The Property ASSistant (PASS) [22] tool has
been implemented to facilitate the specification of event-
based systems. The PASS tool provides three notations
for the requirements specification, in three complementary
languages: natural language summary, µ-calculus and UML-
like notations. There are other tools such as CHARMY [23]
that support the design and validation of architectural speci-
fications captured in UML. The latest tool called PSPWizard
[24] is very similar to PROPEL and Prospect, yet it has a
more comprehensive catalog of specification patterns.

Some of the listed tools also provide formal analysis
and verification engines integrated into the tool set. The
Prospect tool provides means for the run-time verification
of properties specified in FIL. CHARMY can be used for
the verification of architectural designs using SPIN, whereas
the PASS tool provides run-time verification of event-based
properties specified in µ-calculus, by using the underlying
mCRL2 engine.

If compared to the tools listed in this section, the
SESAMM Specifier has several advantages. First, all pre-
viously mentioned tools rely on a specific pattern catalog.
SESAMM Specifier does not include a predefined catalog,
but it is a more general tool built on top of the pattern-
based approach. Consequently, the SESAMM Specifier has
more expressive power than the rest of the tools. Secondly,
the SESAMM Specifier provides a mechanism for providing

Table I
RESULTS FROM THE PRELIMINARY INTERVIEWS

Interviewee Preffered visual notation
1 RTGIL
2 RMF
3 UCMPPS
4 UCMPPS
5 FSA
6 LR

7 RTGIL

visual feedback to the users. Although not unique with
respect to this feature, our tool provides more options than
most tools, and we are currently working on extending the
set of available graphical notations for visualizing behavior.
What is truly unique about the SESAMM Specifier is the fact
that it has been developed with practitioners in the loop. This
has resulted in a tool that engineers can associate themselves
with, which can have a positive effect on the adoption of the
tool in their everyday work.

VI. DISCUSSION

Prior to the implementation of the SESAMM Specifier, we
have conducted a two tier structured process for determining
the features that such tool should encompass. During the first
phase, we have performed a literature survey to identify the
already existing tools and methodologies based on graphical
notations suitable for visualizing formalized behavior. The
identified tools and their features have been discussed in
Section V. The survey for identifying notations based on
graphical elements has yielded the following results: RTGIL,
UCMPPS, LR, FSA and Run-time Monitoring framework
(RMF) [25].

In the second phase, we have performed a preliminary
study in which seven different stakeholders involved in the
requirements engineering process in the company have been
asked to use the proposed methods and select one that, in
their opinion, captures the formal requirement behavior in
the most intuitive way. The results of the preliminary study
are given in Table I, showing that the RTGIL and UCMPPS
have been selected by two participants, while RMF, FSA
and LR have been found useful by only one interviewee.
Based on these results and additional discussions with the
engineers, the RTGIL, UCMPPS and LR notations have
been marked as top priority for the implementation in the
first version of the tool. The rest of the notations are expected
to be implemented in subsequent versions of the tool.

VII. CONCLUSIONS

In this paper, we have proposed a tool called SESAMM
Specifier for the formal requirements specification in indus-
trial settings, using a pattern-based approach.

The tool has been developed with three main features in
focus: engineer friendliness, extensiveness and flexibility.
To make the tool usable by industrial practitioners, we
have incorporated the feedback obtained by interviewing
different stakeholders involved in the requirements engineer-
ing process in the chosen company from the automotive



domain. The engineers were involved in the design decisions
regarding the selection of the features to be implemented in
the tool and the ways in which the chosen features were
going to be implemented.

Unlike any other existing tool for pattern-based require-
ments specification, our tool is highly extensible. This has
been achieved by providing an expert UI through which
an expert practitioner can create a pattern catalog that can
be used by different stakeholders, during the process of
formal requirements specification. This opens a window of
possibilities for customizing the approach to fit the needs
of a specific industrial domain (ex: automotive, avionics,
railway), or even a sector within a company with specific
needs for requirements specification. In addition, our tool
supports the “on demand” definition of multiple views
expressed in different notations in which the requirements
can be specified.

To enable engineers to understand the semantics of the
specified behavior better, the tool provides a visualization
of the patterns in a number of different notations based on
graphical elements. The initial feedback from the engineers
confirms our intuition with respect to the positive impact
of such a feature on the understanding of the behavior of
formally specified requirements. To gather more concrete
data, we plan to conduct a study on a larger scale, in which
different stakeholders from different sectors of the company
will be using the tool to specify selected requirements.

The tool described in this paper represents a first step
towards a more comprehensive engineer-friendly framework
for formal specification, analysis and verification of indus-
trial system models. To be able to achieve this ambitious
goal, the tool will most probably evolve via more design
phases in which the specification and visualization features
will be improved, as well as new features for the formal
analysis of system requirements added.

ACKNOWLEDGEMENT

This work was funded by the Swedish Governmental Agency for
Innovation Systems (VINNOVA) under the VeriSpec project 2013-01299.

REFERENCES

[1] J. P. Bowen and M. G. Hinchey, “Ten commandments of
formal methods... ten years later,” IEEE Computer, pp. 40–48,
2006.

[2] “ISO 26262: Road vehicles Functional safety,” Geneva,
Switzerland, Tech. Rep., July 2011.

[3] A. Post, I. Menzel, J. Hoenicke, and A. Podelski, “Automotive
behavioral requirements expressed in a specification pattern
system: A case study at bosch,” Requir. Eng., pp. 19–33, 2012.

[4] P. Filipovikj, M. Nyberg, and G. Rodriguez-Navas, “Reassess-
ing the pattern-based approach for formalizing requirements
in the automotive domain,” in RE’14, 2014.

[5] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in
property specifications for finite-state verification,” in ICSE
’99. ACM, 1999, pp. 411–420.

[6] K. M. Olender and L. J. Osterweil, “Cecil: A sequencing
constraint language for automatic static analysis generation,”
IEEE Trans. Softw. Eng., pp. 268–280, 1990.

[7] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag New York, Inc., 1992.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic
verification of finite-state concurrent systems using tempo-
ral logic specifications,” ACM Trans. Program. Lang. Syst.,
vol. 8, no. 2, pp. 244–263, Apr. 1986.

[9] S. Konrad and B. H. C. Cheng, “Real-time specification
patterns,” in ICSE ’05. ACM, 2005, pp. 372–381.

[10] R. Koymans, “Specifying real-time properties with metric
temporal logic,” Real-Time Syst., pp. 255–299, Oct. 1990.

[11] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking in
dense real-time,” Information and Computation, pp. 2–34,
1993.

[12] Y. Ramakrishna, P. Melliar-Smith, L. Moser, L. Dillon, and
G. Kutty, “Interval logics and their decision procedures: Part
i: An interval logic,” Theoretical Computer Science, pp. 1–47,
1996.

[13] L. E. Moser, Y. S. Ramakrishna, G. Kutty, P. M. Melliar-
Smith, and L. K. Dillon, “A graphical environment for the
design of concurrent real-time systems,” ACM Trans. Softw.
Eng. Methodol., pp. 31–79, 1997.

[14] J. Hassine, “Formal semantics and verification of use case
maps,” Ph.D. dissertation, Montreal, P.Q., Canada, 2008.

[15] I. Lee and O. Sokolsky, “A graphical property specification
language,” in In 2nd IEEE Workshop on High-Assurance
Systems Engineering. Society Press, 1997, pp. 42–47.

[16] X. Zhang, M. Persson, M. Nyberg, B. Mokhtari, A. Einarson,
H. Linder, J. Westman, D. Chen, and M. Törngren, “Experi-
ence on applying software architecture recovery to automotive
embedded systems,” in CSMR-WCRE, 2014, pp. 379–382.

[17] M. Nyberg and J. Westman, “Failure propagation modeling
based on contracts theory,” in EDCC, 2015, pp. 108–119.

[18] J. Westman and M. Nyberg, “Environment-centric contracts
for design of cyber-physical systems,” in MODELS, 2014, pp.
218–234.

[19] R. L. Cobleigh, G. S. Avrunin, and L. A. Clarke, “User
guidance for creating precise and accessible property spec-
ifications,” in SIGSOFT ’06/FSE-14. ACM, 2006, pp. 208–
218.

[20] O. Mondragn, A. Q. Gates, and S. Roach, “Prospec: Support
for elicitation and formal specification of software properties,”
Electronic Notes in Theoretical Computer Science, pp. 67 –
88, 2003.

[21] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil,
“Propel: An approach supporting property elucidation,” in
ICSE ’02. ACM, 2002, pp. 11–21.

[22] D. Remenska, T. A. C. Willemse, J. Templon, K. Verstoep,
and H. Bal, Property Specification Made Easy: Harnessing
the Power of Model Checking in UML Designs. Springer
Verlag, 2014, pp. 17–32.

[23] P. Inverardi, H. Muccini, and P. Pelliccione, “Charmy: An
extensible tool for architectural analysis,” in ESEC/FSE-13.
ACM, 2005, pp. 111–114.

[24] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang,
“Aligning qualitative, real-time, and probabilistic property
specification patterns using a structured english grammar,”
Software Engineering, IEEE Transactions, pp. 620–638,
2015.

[25] J. Simmonds, M. Chechik, S. Nejati, E. Litani, and
B. O’Farrell, “Runtime verification,” M. Leucker, Ed.
Springer-Verlag, 2008, ch. Property Patterns for Runtime
Monitoring of Web Service Conversations, pp. 137–157.


